STRuCTURE DES ORCHIDEEES

NOTES DUNE ÉTUDE

Cheralier do l'Ordro de S. Thiago da Espads, du mérito solentififus et iltéraire; Membre do IInstitut historique du Brésil ; do I'Académio Royale
dos solunces de Lisbonnó; de la sociétó botanique Impériale et Rogalo de Vienne; dos soclétés botaniquo d'Edimbourg, des naturalistes do Fribourg, dhortloulture do Marselile, oto. oto.

Publié sous les auspices du Ministère des Travaux Publics

RIO DE JANEIRO
TYPOGRAPHIE NATIONALE
1883
$38-83$

AVERTISSEMENT

Je publie ici les notes que j’avais réunies dans une lettre adressée à mon ami le savant botaniste brésilien Mr. le Conseiller Baron de Capanema.
Dans ces notes se trouvent enregistrées les observations que j’ai faites à différentes époques, et qui justifient mon opinion sur la structure des fleurs des orchidées, copiées à mesure qu'elles me tombaient sous les mains.

Le Gouvernement Impérial ayant ordonné la publication des diagnoses de mes orchidées nouvelles, guidé par les conseils de quelques amis, et profitant de l'occasion, j'ai publié cettelettre qui n'a pour but que d'aider ma memoire. N'ayant pas du temps ni de coordonner ou même refondre mes idées on y remarquera le manque d'unité, mais je crois que le lecteur bienveillant voudra bien m'excuser.
Je donne ici un témoignage public de gratitude à Mr. le Conseiller José Antonio Saraiva, Président du Conseil des Ministres, ainsi qu'à Mr. le Conseiller José Julio d'Albuquerque Barros, son Officier de Cabinet, qui ont pris tant d'intérêt aux humbles travaux de

P'Auteur

STRLCTURE DES ORCHIDÉES

Mon cher Conseiller.

Je viens occuper votre attention pendant quelque temps, pour vous obliger à faire des observations qui puissent conffrmer ou détruire celles que j'ai faites sur les fleurs des Orchidées. Je vais les lconsigner ici, telles qu'elles se trouvent dans mon cahier de notes, et je vous supplie qu'avec votre autorité de maître et d'observateur et avec la franchise qui vous caractérise vous me disiez si elles sont fondées ou non. Vous le savez, jamais je n'ai suivi l'ancien magister dixit; j'ai toujours cherché, quand je fais quelque etude, à observer d'abord pour comparer ensuite mes observations avec celles des autres. Ce que je vois, ce que j'observe, quoique allant contre les opinions des maitres, je le soutiens jusqu'au moment oú l'on me prouve 'mon erreur, parce que comme le dit Link: cautus sum in sententia mea proferenda.

Ce que vous allez lire (ecrit currente calamo) est le résultat d'une étude organogénique que j'ai faite à différentes epoques, sur plusieurs orchidees, pour mieux les connaitre.
Je commencerai par vous citer ce que le savant Darwin a écrit à ce sujet :
a The theorical structure of few flowers has been so largely discussed as that of Orchids; not is this surprising seeing how unlike they are to common flowers. No group of organic beings can be well understood until their homologies are made out; that is, until the general pattern, or, as its often called the ideal type, of the several members of the groups intelligible.,
En exposant ici la structure des fleurs des Orchidees, déjà si etudiee par de savants botanistes, mon entreprise pourra paraître audacieuse; je semblerai plus téméraire encore en presentant des résultats differents de ceux qui ont eté obtenus pour ceux qui se sont occupés de ce sujet; mais, en ne donnant ici que les données fournies par l'observation directe et qui d'ailleurs sont des plus exactes, on me pardonnera, je l'espère, ma témérite.

Une lettre ne comportant pas de grandes reflexions, je serai bref.

Depuis très long-temps, la famille des Orchidees est connue, toutefois pas autant qu'aprés la découverte de l'Amérique, mais autant que les espéces Européennes, Asiatiques et Africaines, dans le siècle passé, le permettaient, et elle toujours a fourni des sujets à plusieurs études, plus au moins philosophiques.
La fleur d'une Orchideé, qu'elle appartienne à n'importe quelle tribu, exotique ou indigène, elle se présente toujours dans la nature, soit au botaniste, soit à l'amateur,

Co qu'on observo dans une fleur des orchideés. Sa division.
sous un aspect très-simple, à l'apparence, mais qui est le résultat d'une modification congénitale.
Elle se compose de six divisions, dont la réunion forme le périanthe ou périgone des modernes, qui est distinctement composé d'un calice et d'une corolle de trois divisions alternes, en genéral coloriées, conservant plus au moins d'uniformite. Par la forme et par la structure, ainsi que par la couleur, il se détache un pétale, tepale de quel-ques-uns, qui modifié prend une autre dimension, des formes bizarres, entierement distincte de la simplicité de ses deux autres compagnes; ce pétale a le nom de labelle.
Cet involucre protége les organes de la reproduction, qui intimement unis forment, au centre, et en continuation à l'ovaire, un organe spécial, plus ou moins long et plein d'apparat.
Par sa forme, il est connu sous le nom de colonne ou gynostéme (1) qui lui est donné, car il sert d'union entre les mâles et les femelles. Voilá ce qu'on voit dans une fleur, ce qui détermina limmortel Linné à la classer dans la monandrie, et plus tard Jussieu, dans la monoépigynie.
Elle a êté ainsi consideree jusqưả Robert Brown, qui chercha à examiner sa véritable structure et à déterminer le nombre de ses étamines et pistils, ainsi que leur position en relation au périanthe, c'est- $\dot{\alpha}-$ dire, il a fait une étude théorique qui justifait la forme qu'en réalité présente la fleur, modifíe de ce qu'elle devait être.
Son étude a eté la clef qui a ouvert le chemin pour les autres et son résultat a eté peu modifié ensuite. Ses observations, qui ont eté publiées dans les Transactions of the
(1) Kuvì-pistil, σ वrf|uwv, ótamino.

Linnean Society, (1) se résument ainsi: la fleur se com-

Opinion do
Darwin. Darwin.

Opinion du Dr.
Lindloy.
pose de trois pétales, de six étamines, disposés en deux ordres de verticilles, dont celuidu verticille extérieur est fertile, et de trois carpelles, dont l'une par modification forme le rostelle. Ces quinze organes sont disposés en cinq verticilles alternes, trois à trois.
Le Professeur Brown, croit que trois de ces étamines se combinent avec le labelle. L'orchidologiste anglais, John Lindley, au commencement, adopta l'opinion de Brown, mais plus tard, relativement au stigmate et sa position il la modiffa, c'est-d́-dire, il était dans le vrai et il passa au faux, comme nous le verrons plus tard. Voilá ce qu'il dit: «While, in sommon with Dr. Brown Iregarded the stigmate as really consisting of confluence I also supposed the position of the stigmata to be opposite the petals... The opinion I now retracte in consequence of the position of the stigmata in Cypripedium, which C. spectabilis hence most clearly to be opposite sepals.»
Le professeur Lindley en donne ainsi les caractères: «stigmata saepius in discum mucosum cavum nunc prominentem con fluentia; dorsale in marginem superiorem glandulis 1-2 in Vandeis Neotteisque separabilibus instructum, saepe in rostellum elongatum.. .. ; lateralia in plurimis obsoleta nunc basi labelli appendicis s. lamellarum callorumve formã adnata.»
Il y a déjà une vingtaine d'années que Charles Darwin êtudiant homologiquement les fleurs des orchidées après des études anatomiques, faites sur des espéces, la plupart Europeennes, établit une autre theorie et présenta une autre structure, qu'on comprendra mieux par le

[^0]diagramme ci-joint, avec les explications qu'il en donne.

J'observe, pour completer les vues de Darwin, que les petits cercles inclus dans les ares, qu'indiquent les sépales et les pétales, sont des faisceaux des trachées. Je n'expose pas ici largement l'opinion de Ch. Darwin parce qu'elle est dans le livre que vous connaissez trés-bien,

Pig. I-SS. Sifgmates. Sr, Stgre ate modifio pour former to rostellum. A 1. Anthere fertile du vertioille extérieur. A \&. A 3. Anthères du uetne rerifilo combintes arce le petalo fnffrieur pour former le labellum, a 1. a. 9. Anthì res rudimentaires du verticillo Intírieur formant généralement lo clinandre, fertiles dans to Cypripediam, a 3. Troisì̀me anthère du même rortioillo gul, quand il existo, forme lo derant do la colonn-.
intitule: On the oarious contrivances by which british and foreing orchids are fertilized by insects, (1) et y vous la verrez.
Voilà les opinions, excepté celle de Blume, sur la structure des orchidees, mais, qu'en me guidant d'après
(1) Un volume in-60, London, 1826.
l'harmonie générale de la nature et pénétré do la vérité de la maxime Linnéenne que la natura non facit saltus, je ne pouvais pas admettre. L'étude que je faisais sur des fleurs, sur de jeunes boutons, sur des fleurs fécon-

Mes doutos.

Difficulté do l'ótudo. dées, ainsi que sur des fruits, me rendait perplexe. Quelques fleurs me semblaient vouloir confirmer les résultats connus, mais d'autres en présentaient de différents, ce qui m'obligeait à rejeter ce qui était déjà établi, quoique affirmé par des opinions autorisées. Á la fin, aprés plusieurs études anatomiques, en sections transversales, et en sections verticales, il me sembla que j'etais arrivé à détacher les organes que je cherchais et à séparer leurs respectives positions.
L'union intime des organes rend extrémement difficile leur séparation, et on ne peut le faire qu'avec l'aide de deux microscopes où simultanèment on observe les coupes transversales et longitudinales.

Quiconque étudie, même légèrement, une orchidée, fera tout de suite cette reflexion : comment un organe femelle, peut-il se terminer en mâle? Je m'explique, avant d'exposer le résultat de mes observations.

En prenant une fleur d'orchidée quelconque, on remarque dans son ovaire six divisions, dont trois placentiferes, qui correspondent aux trois petales, et trois divisions steriles, aux sépales.
Eh bien, celles qui doivent correspondre aux trois stigmates, se présentent opposées aux sépales dans le gynostème, ce qui est d'accord avec Lindley et Darwin. Mais, comment explique-t-on cette transposition d'un organe contre la loi de l'alternance? Le gynostème est creux en dedans, c'est-à-dire, il a un cunicule qui se prolonge jusqu'á l'ovaire ; comment donc expliquer le passage d'un organe de la face vers le còté opposé sans que celui-ci traverse au dessus de l'ouverture cuniculaire?

C'est ce que tout d'abord, j'ai tâché d'etudier, me basant sur l'harmonie de la Création, ne pouvant pas pour cela accepter, sans controle, l'opinion des maîtres celébres.
Je présente le diagramme que j'ai établi, fondé sur mes observations, qui pourront n'ètre pas vraies, mais qui ont été consciencieusement faites et qui expliquent beaucoup mieux l'anomalie des fleurs en question, comme vous le verrez plus loin.

Fig. II,-E. E'tamines qui forment les cotés of la face da gynostome. E' E'tamine qui formo le dos du gynostòme ot uni aux lateraux forment lo olinandre. E. - E'tamines qui subdirisies formont non seulement les cotés que les staminodes, eto. S., Stigmates unis, fertiles dans 10 Cypripedium. S." Stigmate dorsal quil formo lo rostele.
Avant d'y arriver, il me convient de faire une observation. On a etabli pour les végetaux ligneux un nom pour désigner le point où la tige se sépare de la racine, pourquoi n'etablissons nous pas aussi un nom pour indiquer la séparation entre l'ovaire et le calice, quand celui-ci est distinct et ne peut pas être confondu avec des bractés?

Plan divisoiro entre l'ovairo ot lo calico des orchidếos. Mézaulhe.

Harmonio. Modifications sans étro motivíos par les férations.

Dans les orchidées, le calice a toujours une ligne de séparation bien nette, ligne qui est occupée par un calicule dans les genres Episthephium, Lecanorchis et dans quelques Vanilles, pourquoi done ce plan de division, ne porte-t-il pas un nom pour l'indiquer? Dans ce moment, par exemple, l'absence d'un nom m'embarasse pour pouvoir clairement et naturellement expliquer la position des filets des stigmates, et, dans ce cas, je n'ai pas hésité à créer un nom pour la ligne ou plan de division entre l'ovaire et la racine du calice. Pour cette ligne, je propose donc le nom de mezanthium, on mézanthe, dont l'origine grecque vient de μ ícoo, milieu et avoos, fleur. Aprés cette remarque je crois pouvoir continuer.
Comme nous le savons, les unions des organes floraux sont trés-communs parmi les monocotylédonées; la loi organogénique et celle de l'alternance ne sont jamais démenties, quand on connait bien la morphologie vegétale et pourtant guidé par ces principes établis dans la science et par ce qu'on voit dans la nature, je suis arrivé à un résultat, quoique contraire à celui déjả connu, mais qui nous montre bien les modifications par lesquelles a passé une fleur d'orchidée, pour arriver à l'etat où on la voit aujourd'hui ; c'est-à-dire, sans les modifications des gerations, mais comme telle qu'elle est sortie des mains du Créateur, qui, dans sa sagesse, nous présentant ce que nous voyons naturellement, n'a pas laissé, au fond, de suivre organogeniquement le type établi, qui caché on peut néanmoins le démasquer.
Nous pouvons considérer une fleur d'orchidée comme une fleur anomale, car l'anomalie, selon la bonne définition de Sainte-Hilaire, n'est qu'un autre arrangement qui a ses limites et ses régles, en nous offrant des transitions d'un ordre habituel pour un autre nouveau. En considérant bien l'anomalie, elle n'entre pas dans les faits
tératologirues, car jamais elle n'attaque la santé du végétal.
En faisant une section horizontale dans l'ovaire d'une orchidée, on voit facilement qu'il est composé de six carpelles et nonde trois, quoiquil presente trois placentas seulement. Pour n'en admettre que trois, comme en genéral les placentas occupent les bords des feuilles carpellaires, et non la nervure médiane, nous aurons trois placentas occupant les bords des feuilles carpellaires et la déhiscence du fruit se faisant par les nervures, ce qui n'a pas lieu dans ce cas et mème ce fait est trés-rare dans d'autres fruils. Outre cela, dans l'ovaire uniloculaire, les placentas pariétaux ne peuvent pas, d'aucune maniere, laisser d'appartenir à deux carpelles différentes, par conséquent trois placentas représentant six carpelles. Nous avons alors six carpelles, comme nous le verrons mieux plus loin, mais outre ces six, nous voyons encore en plus trois divisions stériles et nous observons encore sur le dos des carpelles fertiles quelque chose qui les modifie toujours, ce qui, d'aprés la loi de la symétrie, nous permet de dire que la fleur contient douze carpelles. (Fig. III. a. b. c.)
Cela nous semblerait absurde, si nous ne savions pas que deux verticilles peuvent se lier intimement en nous présentant de nouvelles formes et une nouvelle consistence. Ainsi, le type primitif de ces fleurs, s'il a existé, ce dont je doute, devait être composé: d'un calice de six sépales (Fig. III b. c.), d'une corolle de six pétales (a.), d'un androcee de six étamines (d.) et d'une gynécee de six stigmates, (E.) groupés par trois.

Il semble que cette hypothèse est contraire à ce qui est établi, c'est-à-dire, que le nombre trois caracterise les monocotylédonées, mais je ne m'eloigne pas de ce principe, tant que le nombre trois est celui que je

Trois valvulot qui corrospondons a six carpellos.

Typo théorique d'uno fleur.
présente prédominant dans les verticilles de la fleur, comme nous la voyons aujourd'hui.

En recherchant les parties qui la constituent, je rencontre le nombre trois, mais venant de six, ce qui ne fait pas exception á la loi, parce que ce fait le confirme, présentant clairement des verticilles de trois organes.

Les feuilles carpellaires en formant un verticille au lieu de se souder par les bords, ont souffert une compression qui a servi á les diviser en deux, six en cercle exterieurement (b. c.) et les autres six en dedans. (a.) Lá commence l'anomalie avec l'union des unes avec les autres, en formant les deux verticilles au sommet de l'ovaire et un à la base.
Les six qui sont devenues intérieures, alternativement, se sont soudées deux à deux et ont conservé la proprièté reproductrice, pendant que les six extérieures, trois sont devenues steriles et trois sa sont liees intimement aux intérieures, protégeant les bords liés, oú les placentas se présentent, en déterminant ainsi la forme qu'elles offrent aujourd'hui.

Voyez le diagramme que j'ai établi pour l'ovaire et le gynostème.

Dans quelques Epidendres, (Encyclium) nous rencontrons clairement la preuve que les trois des six carpelles stériles se lient avec les six fertiles. (Tab. II. fig. 3-4.)

Exemplo de donzo carpolles.

En prenant le fruit de l'Epidendrum odoratissimum on voit que les six carpelles fertiles (a.a.) sont lisses extérieurement, pendant que les trois steriles (b.b.) sont granuleuses; et bien, dans l'union des carpelles fertiles, opposées aux cordons placentifères, existe une raie profonde, dans chacune des paires, dont la concavité est granuleuse, comme les trois carpelles stériles et nous montrent qu'elles sont de la même nature.

Qu'elles sont de vraies carpelles et non des nervures carpellaires nous en trouvons la preuve dans le Dichaea coriacea Barb. Rod. (Tab. II. fig. 6.) Cette espéce,

Uno prouve oxompliffée qu'olles sont dos carpolles ot non des nervares carpollairos. originaire des montagnes du Rodeio, à Rio de Janeiro, ainsi que de Minas Geraes, est venue me montrer que ces carpelles ne sont pas toujours steriles, et que toutes sont

Fig. III.-a. Les carpelles qui so lient et so rendent intérleures et placenifères. b. Les carpelles qui so llent en courrant la suture des intérieures. e, Les carpelles qui devionnent stérlles. d. Etamines qui s'unlssest en trols. e. Stigmates unis, Les lignes polatiliées montront le changement dos carpelles et la direction des étamines qui a'unissent.
propres à être ovolifères. En prenant son ovaire, ou mieux son fruit, en y faisant une coupe transversale, on voit que toutes les carpelles se sont intimement liees, et qu'il n'en reste qu'une de libre, celle du dos, justement l'une des trois qui sont toujours stériles. L'union de celles qui sont fertiles avec les deux autres stériles, est faite d'une telle manière, que ni le parenchyme, ne le

Mollfications qu'ont souffert 10 calice ot la corollo on 80 transformant on périantho.

> Les organes qui composent uno
revèle, car leurs positions sont distinctes si on les compare avec celle du gynostème, et aux faisceaux des vaisseaux vasculaires. La carpelle qui dans toutes les espéces est toujours stérile, est ici fertile, et les deux autres deviennent aussi placentifëres, pendant que celles qui sont toujours fertiles, deviennent steriles. C'est lả une exception, mais qui vient nous prouver, que nous ne poulvons les prendre que pour de vraies feuilles carpellaires. En faisant aussi exception parmi ses compagnes, elle présente ses stigmates sans la torsion, que nous verrons plus loin, et sont placés en s'opposant aux sépales, l'ovaire et le rostelle n'etant formés que par la dorsale seulement. Cette espéce en faisant exception, interrompt la loi de l'alternance, et devient plus anomale, mais cette anomalie vient porter une vive lumière dans la question.
Pour prouver que les trois valvules, considerées jusqu'á ce jour comme trois carpelles, sont au nombre de six et non de trois, je montre la coupe transversale de l'ovaire du Sarcoglottis ornitliecephala. Barb. ${ }^{〔}$ Rod., l'ancien Serapias fascculatia Vellozo, copiee du naturel et augmentée deux fois. (Tab. II. fig. 1. 2.)
Aprés ces exemples qui sont venus à propos, je vous montrerai les autres modifications.
Le calice et la corolle ont souffert aussi des modiflcations dans le nombre de leurs divisions, ainsi que dans leurs positions. Des six sépales, trois ont avorté, et des six pétales trois sont unies aux autres, le calice demeurant tri-sépale, par avortement, et la corole tri-pétale, par l'union. L'androçe et le gynécée se sont unis aussi et en ont formé le gynostème. Par le diagramme que j'ai déjà présenté on saisit bien ces transformations.
Par mes observations, je conclus donc, que théoriquement, comme dans la phrase de Darwin, que le type
primitif d'une fleur orchidacee a eté composé de vingt quatre organes et non de quinze. Un calice avec six sépales, dont trois sont avortés; une corolle à six pétales, dont trois onl été réunis, ceux-ci en alternance avec ceux-lá. Des ces pétales, le supérieur, mais qui par la torsion de l'ovaire devient presque toujours inferieur, a pris une forme spéciale qu'on a nommé labelle; de douze organes reproducteurs plus ou moins modifiés et lies, disposés en trois cercles concentriques, dont six sont les étamines et les six autres réunis en trois faisceaux, forment les styles.

Quand on fait une coupe transversale dans la base d'un ovaire, d'un bouton peu développé, on y voit neuf faisceaux de vaisseaux et trachées en deux verticilles, dont les extérieurs sont plus grands. En poursuivant les coupes, de bas en haut, on remarque que ces vaisseaux, présentant les deux verticilles, sont devenus plus développés et subdivisés, mais qu'en arrivant au mézanthe, la coupe nous montre six divisions déjả bien distinctes, en présentant celles qui en général sont placentifères, trois faisceaux chacune et les steriles, un seulement. Si nous poursuivons les coupes nous voyons que parmi ces vaisseaux, les uns rentrent dans les sépales et pétales, et les autres vont au gynostème. Chaque groupe de vaisseaux représente une carpelle, par conséquent nous avons trois valvules avec un seul groupe chacune, et trois, ayant trois groupes chacune, ce qui nous donne douze groupes. Chaque groupe se compose de deux faisceaux de trachées, l'un placé devant l'autre. Je vous ai montré comme je considère l'union des trois carpelles placentifères n'en formant qu'une, je vous montrerai maintenant comment ces vingt quatre faisceaux se subdivisent. Des carpelles steriles, sortent deux faisceaux, l'extérieur va en se subdivisant aux sépales

Numero dos vais. soaux qu'on roncontro dans un ovairo ot lours directions.
et l'intérieur, forme une étamine, ce qui nous donne déjá trois êtamines. Des carpelles fertiles, (les trois unies) celle du dos, fournit aux pétales un faisceau et l'autre au gynostème, ce qui nous donne encore trois étamines, et porte le nombre à six. Celles-ci, forment deux verticilles, l'intérieur étant compose de trois faisceaux des carpelles fertiles unies aux steriles et l'extérieur avec ceux des stériles seulement. De chaque groupe des carpelles fertiles unies, sortent des laterales quatre faisceaux, deux vont aux petales et deux s'en vont aux pistils, en nombre par consequent de six. Ceux-ci se groupent en trois corps formant un triangle dont la base est opposée au labelle.
Les etamines, suivent la loi de l'alternance, elles sont opposées aux pétales, quoique apparemment elles paraissent l'être aux sépales.
De ces six étamines, il n'y a que le groupe latéral droit (après la torsion que nous verrons) ou le latéral gauche et antérieur, dans le genre Cypripedium, qui sont fertiles.
Les vaisseaux des étamines se divisent irregalièrement au mézanthe et vont, en quelques espèces, non seulement au gynostème qu'au labelle, oú ils forment les lamelles, les caroncules, les tubercules et lui donnent les formes bizarres que quelque fois il presente. Il m’a eté impossible de déterminer le nombre des vaisseaux, dans cette subdivision, car il varie selon les espéces. Dans quelques espéces, ils se subdivisent depuis les carpelles.
Reprenons encore l'ovaire afin de rendre plus clair notre sujet. Dans ses Genera et species, le professeur Lindley en traitant de l'ovaire, nous dit: carpellis 6 constans, quorum 3 petalis opposita placentas didymas polyspermas parietales gerunt, mais plus tard au sujet du
fruit (1) il nous dit qu'il a trois valvules et trois nervures.

Voici son diagramme:

Fig, IV

Robert Brown n'en donnait que trois aussi, et cette opinion est suivie par les professeurs Endlicher, Balfour, Payer, Sachs, etc.
(1) School botany. 1862. pag. 131.

Composition do l'ovaire. Cils qui favorisont la disportion dos somoncos.

Je présente ici les diagrammes de Balfour et Sachs:
Pour moi, je peux étre en erreur, l'ovaire est composé de 12 carpelles, comme je l'ai déjá dit, dont 6 toujours avortent en se soudant et se sterilisant, et 6 se soudent par un bord tandis que l'autre reste sous les carpelles steriles, se touchant légèrement. Le bord ne s'entortille pas comme ceux des placentifères, et ne se sterilise pas, mais

Fig. V. $-a$, Axe do lopl des fours. pe. Pírlanthe exteriour. pi, Doux divisions du périanthe Intericur. d. Troisićmo division du périanthe $^{\text {a }}$ intériour. E. Anthère fertile. SS. Deur anthàres arortćes ous taminodes, O. Oralre.

Fig. V1.-Les polnts noirs marquent les Ctamines compldtemeut absentes, les ronds ombrés sont ceux qui semblent destincis a avorter ples tard pour se transformer en ctamiaodes.
produit, au lieu de placentas, des cils soyeux, dont les extrémités touchent les placentas. A la maturité du fruit, ces cils se detachent et, par un mouvement propre, ils se lévent, pour arracher les semences et les jeter au dehors. Les six autres, contiennentdes placentas parietaux et polyspermes, à la suture, entre la courbature|des deux bords que s'unissent.
Du canal formé par la courbement des feuilles carpellaires prennent naissance six cordons, d'un tissu conducteur, qui au sommet se lient à ceux des carpelles contiguës, en formant un groupe de trois au gynostème. Toutes

21 -

les carpelles restent de cette maniëre en communication les unes avec les autres et toutes liees mutuellement par les stigmates. Aprés la fécondation les stigmates se touchent toujours et ne forment qu'un seul corps glutineux et nous laisse voir les tissus conducteurs gonfles.
Me basant, donc, sur l'autorité de ces mêmes botanistes, en définissant les carpelles, je ne peux pas admettre que l'ovaire d'une orchidée soit composé de 3 ou 6 carpelles, si toutefois mes observations ne sont erronées. Voyons. Qu'est-ce que c'est qu'une carpelle ? Physiologiquement, c'est une feuille modifiée, qui, comme les sepales et les petales peut se lier à une autre. (1) L'union des carpelles les unes aux autres, peut se faire ou en unissant les bords du limbe seulement, ou soudant un peu les bords par le dos, ce qui les oblige à se courber intérieurement. La ligne de l'union nous montre leur nombre, et c'est dans cette union que se présentent les placentas et non sur la ligne qui correspond à la nervure médiane ; par conséquent, autant de placentas nous rencontrons dans un ovaire, autant de carpelles il y aura. Par les sutures, trés-souvent, on ne peut pas distinguer les carpelles, car elles disparaissent par la fusion des deux, que cependant le parenchyme dénonce.
Dans l'ovaire d'une orchidée, on rencontre six valvules, c'est vrai, mais les trois placentifêres sont plus grandes et quoique intimement unies, on voit qu'elles se composent d'autres trois, que nous distinguons par les placentas etpar le tissu cellulaire. Celui-ci nous montre que chacune a un des bords si atrophie, roule et lié qu'il arrive presque à la ligne de la nervure médiane. Les autres bordsse touchent légérement sous les trois

[^1]Qu'est-co qu'une carpollo 9
autres valvules, plutôt des carpelles stériles. Que pourraient donc être ces valvules sinon des carpelles avortees ou incomplètes ? Quel organe est-ce donc celui qui lie les carpelles? Si nous considérons ces trois valvules, qui dans le fruil restent adhérentes, comme des nervures des feuilles carpellaires, comme le veut le professeur Lindley, et qui se détachent, nous n'aurons qu'á admettre que trois carpelles, hypothése à laquelle s'op-
${ }_{\text {pistil. }}^{\text {Composition }} \mathrm{du}$ pistil. pose la structure anatomique des memes.
Il nous semble, donc, hors de doute, que le pistil des orchidees est composé de 12 carpelles, dont trois bien distinctes par leurs placentas, qui nous montrent parfaitement six carpelles unies et six incomplètes, qui par avortement ne produisent pas les parties qui constituent les mêmes, en formant un corps spécial. Dans quelques espèces, ces carpelles ont aussi des placentas rudimentaires, quand elles se présentent avec la face interieure en dedans. De ces douze carpelles, par leur union, elles ne présentent que six valvules, que dans un ovaire non fécondé, quelquefois, extérieurement, on n'en voit que trois, car les trois réproductrices restent protégees et cachées par les stériles, qu'après la fécondation de l'ovaire elles ne se développent pas, les autres venant alors, à être visibles en prennant aussi un plus grand développement.
Dans le Cattleya labiata, le fruit ne présente que trois carpelles placentiferes, les autres sont complètement avortées.
Les six carpelles fertiles donnent naissance à six stigmates, qui ne paraissent etre qu'au nombre de trois, par la soudure qu'ils souffrent, et dont la position naturelle n'est pas celle qu'ils présentent.
Lindley, comme nous avons vu, croyait que les stigmates étaient opposés aux pétales, mais plus tard il modifia son opinion, en les plaçant en opposition aux
sepales. Cette opinion est suivie par Darwin, comme nous le voyons dans son diagramme. Chaque carpelle contribue à former un stigmate, mais par l'union des six en trois, l'une de celles-ci fournit deux stigmates, dont les trachées passent sous le placenta. Les stigmates, en arrivant au mézanthe, les deux de la carpelle antérieure l'un se tourne à droite et l'autre á gauche, en faisant cette operation les quatre autres, et lies ainsi mutuellement celui d'une carpelle avec celui de l'autre, ils forment trois groupes, qui sont les trois stigmates, qui paraissent dans la cavité stigmatique, ou dans une coupe transversale du gynostème: malgré leur inclinaison, ils font continuation aux carpelles, mais au mezanthe ils présentent une torsion, c'est-à-dire, le stigmate de la carpelle antérieure s'incline á droite, ce qui le fait s'opposer au sépale inférieur droit, au stigmate de la carpelle latérale arrive la même inclinaison et celui de la troisième carpelle en suivant la même marche, vient s'opposer au sépale inférieur gauche, ce qui rend le triangle, naturellement, qu'ils forment, inverti par la torsion. Le sommet de celui-ci, qui est opposé au labelle, passe à paraitre opposé au sépale supéririeur, comme on voit dans toutes les fleurs orchidacees. Je crois que cette torsion n'a pas été observée, et c'est elle qui explique comment la carpelle peut avoir son stigmatedu côte opposé au cunicule.
Cette torsion est passée au mézanthe, non en angles droits, mais obliquement.

Le rostelle que tous les botanistes donnent comme formé par lestigmate supérieur, ne l'est pas, mais par le latéral droit qui devient superieur. Je cite un exemple qui peut être vérifié dans toutes les espèces, et une figure, augmentee deux fois, l'illustre. (Tab. II. fig. 5)

Examplo do la tursion des stig.
matos.

> Tissus condu. ctours.

Dans la figure de l'Habenaria Johannensis Barb. Rod. on voit linclinaison et la direction des stylets avec les positions interverties. En comparant la fig. 5 avec le diagramme de l'ovaire, dans sa positton naturelle, on voit le déplacement. Le stylet a. quise prolonge de la carpelle de face va occuper la place de la carpelle a^{\prime}.; le stylet b. la place de b^{\prime}. et le stylet c. la place de c^{\prime}., ce qui intervertit le triangle et ils paraissent opposés aux sépales, contre tous les principes organogéniques.
Chacun des stigmates est doublé d'un tissu conducteur, qui, en genéral, n'arrive pas á la base de l'ovaire, en descendant par le canal formé par lincurvation de la feuille carpellaire, couvrant tous les parois du cunicule du gynostème. Après la déhiscence du fruit, quoiqu'il soit desséché, en le mettant dans l'eau chaude, les tissus se gonflent et avec facilite ils se détachent des carpelles. Ils sont au nombre de six comme les stigmates, et se lient les uns aux autres, comme les carpelles. Dans le Maxillaria squalens Lindl. et dans l'Aspasia lunata Lindl. ainsi que dans d'autres espéces, je les ai séparés très-souvent, présentant aprés la maturité du fruit une consistance soyeuse.
La torsion des stylets est rencontrée dans toutes les sous-tribus de la famille.
Parmi les Neottiacees, le genre Sarcoglottis ne présente pas la torsion, mais la carpelle de la face avorte et forme un étui qui couvre les deux stylets, qui composent le gynostème.
Conformation d'un Sarcoglothis.

Ceux-ci font continuation aux autres carpelles en s'inclinant l'un sur l'autre à se toucher, en s'unissant par le dos et en commun formant le rostelle, qui se prolonge au delà des deux stigmates. Malgré cette modification, le triangle n'est pas interverti; toujours le rostelle est formé par les stigmates latéraux. (Tab.II. flg.1-2.)

Dans ce genre les deux carpelles stériles avortent et la fertile antérieure $c c$. prolonge les bords, qui, recourbés, s'incurvent aprés, de maniére á former les sépales inférieurs, preséntant en dedans, à l'union des autres bords, un cordoṇ placentifére. La décurrence de ceux-ci, glossologiquement, n'est autre chose que les bords des carpelles prolongees. Les figures nous montrent trés-clairement que les carpelles fertiles sont au nombre de six et non pas de trois.
Rien n'est plus variable que la structure des orchidées, qui varie non seulement dans les espéces, que dans les genres. Je neไpeux pas, pour cela, assigner avec precision la subdivision des vaisseaux que contienne chaque fleur, parce que, par la séparation il se rend presque impossible.
Les carpelles steriles fournissent les etamines, soit celles qui sont libres, soit celles qui sont liees aux fertiles, ce qui dans la maturité du fruit, aprés la déhiscence, se remarque, car les carpelles stériles restent liees au gynostéme, qui ne forment avec lui qu'un seul corps, tandis, que les carpelles fertiles se detachent, en facilitant la dissemination des semences.
La curvature qu' elles prennent et la force dehiscive propre, font éclater les trachées qui l'attachaient au gynostéme, ce qui les oblige à s'etaler en se recourbant. Dans quelques genres la dehiscence n'est pas en six valvules, car les carpelles stériles restent adhérentes aux fertiles, comme dans les genres Stelis, Lepanthes, etc. qui s'ouvrent en deux valvules, et dans le Polystachia qui n'en presente qu'une seule, ne parlant pas d'autres genres.
L'étude de la position des faisceaux des vaisseaux vasculaires et de leur nature, est une des choses, qui donnent raison à la théorie que je présente sur l'anomalie

Les carpolies stóriles donnent origine aux étaminos.

L'Habenaria Rodeiensis a douzo deiensis ${ }^{\text {a }}$
carpolies.
des ces fleurs. Dans des coupes transversales des ovaires, tandis qu'on voit que les uns ont un faisceau de vaisseaux opposé au placenta, dans d'autres on voit trois et quatre faisceaux, disposés de manière à nous montrer non seulement les nervures médianes des deux carpelles unies, que la troisième qui se lia aux deux autres et qui unies forment les stigmates ou rentrent dans la formation des étamines, qui sont fournues par les stériles.
Les vaisseaux de celles qui sont stériles, en général, bordent la face extérieure de l'ovaire, opposés aux placentas.

Par ce que je viens d'exposer, il ne me reste qu'à fournir encore un exemple, qui vient répandre une vive lumière sur le sujet, nous montrant clairement que dans chaque carpelle, telles elles ont été considérées jusqu'á aujourd'hui, il y en a trois: deux fertiles et une stérile. On pourra considérer cet exemple comme un dédoublement (diremptio), mais, sans raison. L'Habenaria Rodeiensis Barb. Rod., (Tab. II. fig. 7.) une nouvelle espèce décrite par moi, (1) présente les pétales bipartis et le labelle triparti. L'ovaire présente trois placentas en chaque carpelle fertile, oú sont les vaisseaux et les trachées de la base du triangle, quien général présentent, réunis dans un seul faisceau, tandis que ceux du sommet se divisent en six faisceaux, ce qui arrive aussi dans les trois carpelles stériles, en dénotant une analogie entre celles-ci et celles du dos des carpelles fertiles. Outre cette analogie et cette symétrie, on remarque dans les carpelles fertiles des signes composés de trois ares, deux opposés et un superposé, dont le parenchyme est plein de chlorophylle. Les arcs sont séparés par les faisceaux des carpelles stériles.
(1) Gonera et species ofohidearum novarum. II. pag. 256 n .12. parmi un grand nombre de fleurs, quelques-unes m'ont causé une vive satisfaction. Elles se présentaient modifiées, elles avaient deux labelles et deux éperons. Cette disposition proviendrait-elle d'un dédoublement?
Dunal (1), Moquin-Tandon (2) et St. Hilaire, (3) qui est celui qui a le mieux traité de se sujet, le definissent de cette manière: quand il existe dans un verticille d'une fleur au lieu d'un organe, plus d'un, il existel un dédoublement.
Le dédoublement est un phénomène qui fait partie non seulement des faits organographiques normaux, mais encore tératologiques, et il a lieu non seulement dans les feuilles, mais aussi dans les organes floraux, dégenérations des mêmes. Si le dédoublement s'effectue avec énergie et force en augmentant le nombre des organes, on remarque que dans cette augmentation, presque toujours un organe se divise aux dépens d'un autre qui avorte et dans ceux dédoublés il n'existe pas une parfaite ressemblance; il y a toujours une irrégularité, qui nous montre que l'un est né au dépens d'un autre. Les dédoublements ont lieu dans les verticilles, ou dans le même, ou dans l'autre, d'oú viennent les termes diremptio collateralis et diremptio paralella. Mais, que

[^2]Dédoubloment.
les sépales se dédoublent, moins communément, les voit trois valvules, l'antérieure ayant deux placentas séparés et parfaits, ce qui donne à l'ovaire quatre placentas. Les vaisseaux et les trachées au lieu de présenter les deux de la base du triangle unis intimement et ceux du sommet séparés en six faisceaux, ils se trouvent alors modifiés, présentant ceux qui sont unis, séparés, et ceux qui sont séparés, unis, en formant le triangle, cela dans les carpelles latérales.
Dans celle de face, les trois faisceaux, ne forment pas un triangle, ils sont en ligne, ceux des extrémités ont en face un cordon placentifére et ovolifêre, pendant que celui du millieu n'a rien. (Voyez flg. A. B.) Les carpelles sont modifiées aussi; llau lieu de six faisceaux paralêlles, elles ont deux faisceaux, par l'union intime des six. Serait-ce un dédoublement, qui a modifié non seulement la carpelle mais encore la position de tous les vaisseaux? On y voit que les deux faisceaux de vaisseaux, qui en général sont disposés en triangle, avec le sommet en dehors, sont des faisceaux qui représentent la nervure

Conséquonces d'un dédou. blomont. pétales ou les étamines, ce phénomène y se présente seulement; il ne va pas à lovaire. Eh bien, dans l'espéce en question, pour qu'on admette un dédoublement, il faut admettre le dédoublement de l'ovaire, car non seulement le labelle, les carpelles et les placentas se sont dédoubles, et d'une manière qui justifie l'idee que j'ai sur l'union des carpelles.
Examinons et faisons la comparaison.
Comme j'ai déjá montré, la disposition des vaisseaux et des trachées dans l'ovaire de l'Habenaria Rodeiensis Barb. Rod., dans son état normal, comparons le maintenant avec ceux qu'on remarque dans l'ovaire de la fleur à deux labelles.
Au lieu de trois valvules à un placenta chacune, on
médiane des feuilles carpellaires ; ceux de la base forment les carpelles fertiles et celui du sommet la carpelle stérile.
Dans le cas en question, les carpelles fertiles se sont séparées et la stèrile s'est placee entre elles, s'unissant par les bords, et à l'union des bords de celle-ci avec les bords de celles-lá, se sont formés les placentas, comme devait être le type primitif et que le diagramme que j'ai établi nous montre.
En passant maintenant au labelle, on voit qu'il est divisé en deux, autrement, la fleur a deux labelles libres, sans liaison aucune à la base et formés par les vaisseaux qui se prolongent des carpelles. Chacune a fait son labelle.
Pour ce qui est des formes, elles sont venues, a propos, à mon aide. La fleur regardée de face, ($\mathrm{fg} . \mathrm{C}$.) présente le labelle gauche avec les mèmes formes, le même éperon, et la même grandeur que le labelle normal (D.) présentant seulement la lacinie latèrale droite un peu atrophiée, et le labelle droit (E.) entièrement different du gauche, mais avec la conformation et la grandeur des pétales, (F, avec la seule[différence qu'elle posséde un éperon aussi. Est-ce un dédoublement, mon cher Conseiller? Il est très-naturel que si ça en est un, un des labelles perdrait l'éperon, qui comme vous le savez mieux que moi, est formé par l'union des bords des pétales dans la courbure qu'ils font en descendant pour se relever. Dans le dédoublement l'un resterait avec l'eperon au dépens de l'autre, ou tous les deux avec des éperons plus au moins imparfaits, quand, dans le cas présent tous les deux sont parfaits et égaux pour les formes et pour la grandeur.
Que le labelle est formé par deux pétales unis, comme je l'ai dit autre part, cette fleur est venue me le prouver;

Ressomblanco du labollo arec les pétales.

Confirmation quo 10 laballo ost formó do doux pótales.
tant il est vrai, qu'un des labelles, le gauche, s'est présenté complétement semblable au normal, ayant seulement une petite atrophie, que naturellement, quelques fois, on rencontre; et l'autre, le droit, semblable aux pétales, non seulement par les formes que par la grandeur, nous voulant dire positivement que le labelle est toujours le résultat de l'union de deux pétales, qui plus au moins se modifient par cette union, et par les autres organes qui y concourent aussi.

En comparant les figures copiées exactement du naturel vivant, C.D.E.F. on voit ce que j'affirme.

La séparation du labelle, je l'ai vue plus d'une fois, mais pas aussi clairement, pour me confirmer dans mon opinion sur sa structure.

J'ai observé un autre fait, dans le Cattleya Loddigessi où les pétales avaient disparues, mais par compensation, il présentait|deux labelles parfaits, en tout semblables, l'un opposé à l'autre.

Pig. VII-LL. Deux pótales et uno s'́palo qui liés ont fórmó deux labelles. SS. Deax sépales qui sy sjnt unis formant des sépales et en contribuant A la formation des quatre ctamines e.e.e.e.
PP. Pétales arortés qui cesont trasformés en stigmates pétaloides.
J'ai rencontré dans une des iles de la riviére Parahybuna, à Minas Geraes, un exemplaire du Cattleya cité
en pleine floraison, ayant deux fleurs, composees de quatre divisions; deux sépales et deux labelles, tous les quatre aussi parfaites que celles du type en etat normal. Outre cet écart, elles présentaient quatre etamines et deux stigmates pétaloides, tout disposé comme le diagramme le représente, en exceptant les deux étamines inferieures qui sont supérieures aux stigmates par la torsion qu'ils ont souffert.
Dans cet individu, quoique monstrueux, on remarque que les deux pétales qui s'unissant, ordinairement, aux sépales pour former les pétales, se sont séparés, en s'en allant un au sépale superieur, et avec sa compagne ont formé le labelle supérieur, et l'autre, en restant libre, est passé au gynosteme et forme un stigmate. Le sépale qui habituellement s'unit aux deux pétales, en se rendant libre, s'unit au sépale, qui est toujours libre, et en forma un seul corps, de lá vient que la fleur présente deux labelles opposés, l'un supérieur et l'autre inférieur et deux sépales opposés aussi, en forme d'une croix.
Les faisceaux de trachées qui contribuent à la formation du gynostème, ont eté ceux qui ont le plus souffert, dans l'individu en question. Ceux des divisions qui forment le labelle avortèrent, soit inférieurement, soit superieurement, seulement ceux quiforment les sépales libres et ceux qui s'unissent pour former des pétales ont concouru, de manière que le gynostème présente quatre étamines presque libres et dix stigmates, formés par la division qui resta libre, se montrant pétaloide, quoique liee aux étamines.
Cette disposition confirme encore la manière dont j'envisage la division des trachées et la formation des organes qui constituent le gynostème.

Pour faire la synthése de ce que je viens d'exposer, je vous présente l'Epidendrum vesicatum Lindl, l'illustrant

Explication dos coupos transyorsalos do loovairo de l'Epidendrum vesicatum.
avec des coupes transversales depuis la base de lovaire jusqu'au gynostème, faisant acompagner ces coupes de figures théoriques, basées sur les mêmes coupes, qui présentent le nombre de leurs faisceaux de vaisseaux en suivant leur disposition et leur division, qui nous confirme non seulement mon opinion sur le nombre des carpelles, des vaisseaux et leur distribuition. Voyez la Tab. I.
La figure 1 A et 2, qui sont des coupes horizontales du pédoncule| de l'ovaire, copiées du naturel vivant et augmenteés trois fois, présentent neuf faisceaux de vaisseaux divisés triangulairement, en deux verticilles. Ceux du verticille extérieur représente le calice et l'androcée(1) et ceux du verticille intérieur la corolle et le gynécée. La figure 3 est le commencement de la formation des carpelles et se présente intervertiá cause de la torsion qu'y souffre le pédoncule, La figure 4 représente la section du même ovaire, récemment fécondé, fait dans la partie centrale. Jusque lá les faisceaux marchent intimement unis ou liés et en se prolongent jusqu'á la coupe de la figure 6, qui représente la fin de l'espace occupé par les placentas et le commencement de la séparation des carpelles antérieures, oú l'on forme un canal, (que caractérise le nom spécifique de cet individu) et le commencement aussi de la division des faisceaux des vaisseaux des carpelles antérieures.
Dans la fig. ? qui est la section faite au tiers inférieur du canal, dejá les carpelles présentent chacune son faisceau de vaisseaux, qui leur sert de nervure médiane, au nombre de douze, en ayant les stériles trois. Le milieu du canal réprésenté dans la fig. 8 , présente non seu-

[^3]
lement les trois carpelles anterieures complètement distinctes, en laissant voir les bords extérieurs des deux fertiles, oú l'on se forment les placentas, unis en dedans, que la stérile en face en unissant les autres bords, tous avec leurs vaisseaux dans la place de la nervure médianne.
J'y représente le mézanthe par deux sections, (figs. 9 B . et 10 C .,) en montrant dans la premiere les vaisseaux qui vont aux sépales et dans la deuxième ceux qui vont aux pétales, dejà avec des organes tordus á droite en intervertissant le triangle des stigmates.
Si on remarque bien la fig. 9 B. on voit dans trois verticilles 18 faisceaux de vaisseaux et des trachées, ainsi distribués: les trois faisceaux inferieurs, qu'appartiennent aux trois carpelles antérieures vont former le labelle, et les autres les sépales; les trois du second verticille ce sont les étamines et les autres trois du verticille intérieur les stigmates. En 10 C., section faite immédiatement au dessus de 9 B ., on voit la même formation, seulement les trachées qui forment les sépales ne paraissent plus et l'on voit alors deux autres groupes, un de chaque côté, qui forment les petales.

Dans la fig. 11 D., qui représente une section du gynosteeme, on n'y voit que les faisceaux qu'unis forment lesorganes reproducteurs, et les trois inferieurs qui sont ceux du labelle, dejáa augmentés avec les deux qui réprésentent les deux pétales.
Jusqu'ici je vous ai montré ce qui se passait dans lovaire, en acompagnant sa longueur par des coupes transversales, maintenant je vous montrerai comment ces organes se désunissent, se lient et se subdivisent. Afin de rendre bien clair ce sujet, je me servirai des mêmes coupes, laissant de còté la conformation de leurs circonferences, me basant seulement sur leur exacte

Explication des figures thôoriques ot do la disposition des organos.
disposition des vaisseaux et je vous présenterai des figures théoriques, qui éclairciront mieux la question.
Je vous ai déjà dit que la fleur d'une orchidée avait vingt quatre organes, résultat de douze faisceaux de vaisseaux et de trachées qui se subdivisaient; maintenant je vous les montrerai, les suivant dans l'Epidendre cité, suivant toujours la nature. Il n'y a pas d'imagination, c'est l'observation qui nous guide. Observons donc. La Fig. A'. basée sur la fg. 1 A et 2 , présente en sortant de chaque poin, tun faisceau de vaisseaux intimement liés, au nombre de neuf. Ainsi ces vaisseaux traversent longitudinalement l'ovaire jusqu'au commencement du canal, ($f g .6$.) oú le faisceau de face se divise, et, sur le champ ($f g$. 7,) les trois faisceaux des six carpelles fertiles se subdivisent, en allant ainsi jusqu'au mèzanthe. En y prennant la fg .9 B , en la comparant avec la $f g .8$, on remarque qui pendant que celle-ce a douze faisceaux, celle-lá en a dix huit. Voilá la raison: les trois faisceaux qui correspondent aux trois carpelles unies se divisent en autant'de groupes de trois, representant celui du centre la carpelle stérile, par conséquent, de neuf que nous avons vu à la base, ($f g . A^{\prime}$) nous rencontrons douze au-dessus de l'ovaire. Ces douze en arrivant au mézanthe, (fig. 9 B. A." B.) les six qui correspondent aux six carpelles fertiles se subdivisent en douze aussi; six vont à l'intérieur; ceux de l'intérieur se lient par paires en se courbant l'un sur l'autre immédiat de la carpelle prochaine et se présente en formant les trois sligmates, et les six des carpelles steriles se divisent aussi; ceux des deux carpelles solitaires laterales se divisent en deux faisceaux, l'un monte aux sépales et l'autre forme l'etamine et s'unisse à l'une des carpelles stériles liees aux fertiles; celui de la carpelle sterile du dos se divise en quatre faisceaux, trois montent à la sépale supérieure et l'une
forme l'étamine, s'unissant aussi à celui qui fournit la carpelle stérile droite unie aux fertiles et ceux des trois carpelles steriles liees aux fertiles se divisent en quatre faisceaux aussi, trois montant aux sépales latéraux et l'un à l'intérieur à former étamine, en exceptant seulement les faisceaux de la carpelle anterieure qui au lieu de monter aux sépales, se dirigent trois au labelle et un à former étamine. Nous y avons donc dix huit organes, qui se présentent au lieu de douze.

En comparant $A^{\prime \prime}$ avec B on voit en $A^{\prime \prime}$.lla division des organes et en B comme ils paraissent dejaj divisés, dans la section du mézanthe. En $10 C^{\prime}$ nous voyons cepandant quinze, au lieu de dix huit organes, parce que les uns ont disparus et d'autres se sont présentés: les neuf qui montaient aux sépales en etant encorporés, ils ne figurent pas, car la section est faite immédiatement au dessus de son écart, mais il se présente six, qui sont ceux qui correspondent aux carpelles fertiles et qui entrent dans la composition des pétales et du labelle. En 11 . et D. on n'y voit, alors, que les organes separés qui s'unissent intimement, à former le gynostème et les cinq autres qui appartient au labelle, fournissant, comme nous l'avons vu, les trois intérieurs la carpelle stérile antérieure et les latéraux les fertiles anterieures.
En comparant encore la fig. $A^{\prime \prime}$ avec B. on reconnait que les stigmates que jusqu'á $A^{\prime \prime}$ en formaient un triangle avec la base au dos, en B il presente le même triangle avec la base en face, c'est-à-dire interverti, ce qui a lieu comme je l'ai dit, par la torsion qu'il a souffert à droite. Ainsi $S^{\prime} 1$ de la $f i g$. $A^{\prime \prime}$. passe à occuper la place de $S^{\prime} 2$. et celui-ci la place de $S^{\prime} 3$., n'etant fertile, donc, que S^{\prime} 2., n'en parlant du genre Cypripedium. Voilà, donc, avec cet exemple, je crois mon opinion confirmée; néanmoins, je me soumets á vos justes et savantes observations.

Je dois vous faire voir aussi, que, dans la plus grande partie le faisceau de trachées qui acompagnent les stigmates inferieurs, en arrivant au mézanthe se divise, se courbe, confondu avec le labelle, mais quelques fois il le surpasse, s'unit aux autres du gynostème jusqu'à une certaine hauteur et ensuite se detache; d'autres fois il suit lié jusqu'au stigmate, où, alors, non seulement il se prolonge au dessus des autres, mais se recourbe confondu avec le labelle. Pour ne vous présenter un grand nombre d'exemples, nous avons dans le premier cas, parmi les Vandées, le genre Aspasia, et dans le second, parmi les épidendrées, le genre Epidendrum.

Les étamines qui forment les côtés du gynostème, ne sont pas toujours si lieés qu'elles le paraissent, elles se détachent, se prolongent à former des ailes, des antennes, des caroncules, comme dans les Habenarias. Dans le genre Didactyle, nous en voyons quatre bien clairement. Les posterieures et celles opposées au sépale supérieur, presque toujours se prolongent et toutes ensemble ils forment les bords du clinandre qui protégent l'anthère.

Celui-ci, quelque fois, est formé par les lateraux.
Voilá, mon ami, en resumé le résultat de quelques observations organogéniques auxquelles j'ai procédé sur la famille des Orchidées, qui peuvent étre modifiées, mais, plût à Dieu, qu'elles soient acceptées par vous, ou par ceux qui législent dans la science de Linné. Il faut que vous croyez, que, sans y prendre garde, j'ai trouvé ce résultat, malheureusement un peu contraire à ceux des autres qui ont traité de ce sujet.

Je termine celle-ci, vous présentant encore les cinq diagrammes établis par Blume (1) á la fin de la préface sur les Orchideés.

[^4]On y voit que par le genre Cypripedium les troís étamines commencent à se démasquer, montrant le costumé fertil avorté et les deux autres qui sont steriles fertiles. plus clairement ils se présentent dans le genre Apostasia, séparé par Lindley des orchidées, dont le gynostème se divise en quatre parties, en étant une le stigmate. (Fig. C) Dans le genre Neuwiedia les trois étamines sont bien saillants au sommet du gynostéme, qui est divisé en quatre parties, dont l'une est le stigmate. (Fig. D)

Ces trois genres semblemt retourner au type primitif, ou sert à nous montrer comment s'opéra la révolution qui a eu lieu dans les organes et comme ils se sont liés.

Les figs. A. B. sont les diagrammes de la fleur actuelle sans les étamines qu'on n'y voit, et la mème présentant la position occupée par les étamines latéraux. La fig. E., d'un diagramme fictice, nous donne l'opinion de feu le savant botaniste hollandais, directeur du jardin de Buitenzorg, à Java.

En illustrant celle-ci, et pour en faciliter la compréhention, j'ajoute des planches, avec 37 genres et plus de 100 espéces, tout de grandeur naturelle, à différents degrés de développement, avec des coupes horizontales augmentées, qui marquentle nombre de faisceaux de trachées en chaque carpelle.

Agréez mon cher Ami, l'assurance de ma considération la plus distinguée.
J. Barbosa Rodrigues.

Rodeio, le 22 Juin 1881.

TAB. II

Fig. 1.- Sarcoglottis ornithocephala Barb. Rod. p. p. les placentas; p^{\prime}. p^{\prime}. un placenta formé ì l'union des deux carpelles stériles; r. le rostelle ; s. s. les stigmates. Cette figure représente le gynostème et une partie de l'ovąire, ouvert en ayant, deux fois grossie.
Fig. 2.- Coupe transversale du Sarcoglottis ci-dessus, augmenté deux fois. a. la carpelle stérile; b. les carpelles fertiles; c. c. la troisieme carpelle firtile, qui nous montre que elle est formè de deux autres; d. labelle ; e. e. les dents du labelle; f. un placenta formé à l'union des deux carpelles et quoi en remplace la fertile qui est avortée.
Fig. 3. - Epidendrum odoratissimum Lindl. Fruit de grandeur naturelle.
Fig. 4. - Section transversale du même Epidendre, grandeur naturelle. a. les carp lles fertiles; b. les carpelles steriles superposées aux deux fertiles à qui s'en unit. b^{\prime}. les carpelles stériles et libres.
Fig. 5. - Habenaria Johannensis Barb. Rod. Le gynostème et une partie de l'ovaire ouvert en avant et une coupe transversale de lovaire, tout deux fois augmentós. a. b. c. les carpelles fertiles et les placentas ; $a^{\prime}, b^{\prime \prime}, c^{\prime}$. les carpelles stériles ; a. les stigmates ; e. le rostelle alliforme.
Fig. 6. - Dichaea coriacea Barb. Rod. Un fruit et une section du même, le premier de grandeur naturelle et le second deux fois augmenté. Il nous montre les carpelles intimement unies, n'en restant libre que la fertille d'en face, où le fruit s'ouvre en deux valvules.
Fig. 7.- Les détails de l'Habenaria Rodeiensis Barb Rod. A. la coupe d'un fruit normal ; B. la coupe d'un fruit anormal, tous les deux augmentés six fois, le premier avec trois plicentas et le e cond avec quatre ; C. le labelle gauche; E. le labelle droit; F. an pétale interverti, pour qu'on le compare mieux ; D. un labelle normal; tout deux fois augmentés.
Dans la coupe d'un fruit dévelonpé, quatre fois grossie fig. A. la simple inspection nous montre clairement les trois carpelles, qu'unies, ont été considérées comme une seule. Outre la symétrie de la division des vaisseaux, il y a le coloris qui l'en sépsrent. Dans la fig. ci-contre, observée avec le microscope Nachet, oculaire 1, objectif 2 , ont voit le parenchyme divisé en cellules alongées, disposées en trois groupes, qui se touchent, ayant les deux latêraux son réseau de cellules pleines de chlorophylle et celui du milieu les cellules sans coloration. Trois corps y sont accolés, ne sont-ils pas trois carpelles? Les vaisseaux de la base du triangle vulgaire, y sont réunis dans un seul fuisceau, tandis qui ceux du sommet sont divisés en six, et dispcsés en marquant la ligne de division. Les carpelles stériles ont leurs vaisseaux divisés aussi, en six parties, ce qui ótablit de la symétrie avec los autres, et de l'analogie.

TAB. III

Malaxideae Lindl.

Fig. 1. - Pleurothallis Janeirensis Barb. Rod. Le fruit, dévéloppé grandeur naturelle, et une coupe transversale, deux fois augmentée on montrant les carpelles, et les faisceaux de vaisseáux et des trachées qu'elles on ont; chaque stérile en a un et les fortilles trois unis.

Fig. 2.- P. Johannensis Barb. Rod. Ibidem.
Fig. 3.-P. serrulatipetala. Barb. Rod. Ibidem.
Fig. 4.- P. ecallosa Barb Rod. Ibidem.
Fig. 5.- P.oligantha Barb. Rod: Elle montre l'union des deux carpelles fertiles, qu'A la maturité du fruit se conservent unies on se séparant de la troisième et s'ouvrant on deux valvales.
Fig. 6. - P. tricarinata H. B. K. Voyez l'observation faite à la fig. 1.

Fig. 7.-P. pectinata Lindl. Voyez l'observation de la fig. 5.
Fig. 8.- P. echinantha Barb. Rod. Voyez l'observation de la fig. 1.

Fig. 9.- P , macropoda Barb. Rod. Ibidem.
Fig. 10.- P. crocea Barb. Rod. Ibidem.

$$
\begin{aligned}
& \text { (1) D } \\
& \text { 0) } 0 \\
& \text { Ba boro } \\
& \text { Do }
\end{aligned}
$$

(1)

TAB. IV.

Malaxideae Lindl.

Fig. 1. - Lepanthes modesta Barb. Rod. Un fruit et la coupe du même. Les points noirs nous montrent le nombre do faisceaux des vaisseaux en chaque carpelle. Il s'ouvre on deux valvules.
Fig. 2.- L. Wavoraeana Barb. Rod. Ibidem.
Fig. 3.- L. punctatifolia Barb. Rod. Ibidem.
Fig. 4.- L. lobisserrata Barb. Rod. Ibidem.
Fig. 5.- L. oristata Barb, Rod. Ibidem.
Fig. 6.-L. Gunningiana Barb. Rod. Ibidem.
Fig. 7. - Anathallis racemosa Barb. Rod. Ibidem.
Fig. 8.- Anathallis Ibidem.
Fig. 9.- A. Parahybunensis Barb. Rod. Ibidem.
Fig. 10.- Octomeria albina Barb. Rod. Ibidem.
Fig. 11. - Lyparis elata Lindl. 11 nous montre les carpelles stériles connées aux fértiles avec le dos lisse comme celles qui sont libres.

Fig. 12. - Didactyle micropetala Barb. Rod. Un fruit présentant cinq carpolles unies, en s'ouvrant en deux valvales.
Fig. 13.- Didactyle. Ibidem.
Fig. 14. - D. antennifera Lindl. Ibidem.

TAB. V.

Epidendreat Lindl.

Fig. 1.-Epidendrum squamatum Barb. Rod. Un fruit et sa coupe transversale, gr. nat.; coupo transversale da gynostème, deux fois grossie. Les points noirs montrent les faisceaux de vaisseaux et leur subdivision.

Fig. 2.-E. pygmeum Lindl. Un fruit et sa coupe transversale, gr. nat. Dans les carpelles les faisceaux sont on ligne et non disposés on triangle.
Fig. 3.-E. variegatum Hook. Les faisceaux sont liès intimement. Fig. 4. - E. coriaceum Hook. Ibidem.
Fig. 5. - E. fragrans, var. Les faisceaux sont disposès en triangle.
Fig. 6.-E. Avioula Lindl. Voyez obs. fig. 3.
Fig. 7.-E. Betimianum Barb. Rod. Voyez obs. 5.
Toutes ces espècos s'ótalent on six valvules.

TAB, VI.

Epidendreaz Lindl.

Fig. 1.- Epidendrum ramosum Lindl. Un frait bien développe et sa coupe transversale, gr. nat. Les vaisseaux sont liés intimement.

Fig. 2. - E. latilabre Lindl. Un fruit peu développé, gr. nat. et sa coupe horizontale, deux fois grossie. Les vaisseaux sont disposes en triangle, mais ceux du sommet sont subdivisés. a. coupe du gynosteme montrant le nombre de vaisseaux que contribuent à sa formation.
Fig. 3. - E carpophorum Barb. Rod. Un fruit un peu développé et sa coupe transversale, gr. nat. Dans cette coupe les faisceaux dans les carpolles fertiles sont distribués en triangle et la stérile qui couvre la suture de la fertile d'en avant, ne les touche que par les bords, en laissant entre leurs dos et sa face une ouverture cuniculaire. Les trois faisceaux de vaisseaux qui, en général, denotent les trois nervures médiannes des carpelles, y sont subdivisés, deux restent dans les deux carpelles fertiles ot un passe à la carpelle stérile divisé en cinq, nous montrant bien les trois feuilles carpellaires.
Fig. 4.-E. ochrochlorum Barb. Rod. Un fruit développé, gr. nat., fet sa coupe transversale, augmentée deux fois. On voit dans celui-ci les〕trois faisceaux disposés en triangle, dans les carpelles fertiles, tandis que dans la carpelle stérile on n'en voit qu'un.
En examinant l'ovaire avant la fécondation, on voit que la carpelle antérieure a les bords incurvés à se toucher au centre de l'ovaire, en laissant de la sorte un canal fermé. Après la fécondation la partie intérieure, c'est-à-dire, où les bords sont unis, se retire, s'appuye aux parois intérieus du dos et ens'unit, se présentant comme on voit dansla, coupo transversale du fruit. En acompagnant le fruit, on voit néanmoins qu'á son sommet elles so délient une autre fois et forment alors le canal qu'on voit en a.

Fig. 5.- E. cauliflorum Lindl. Un fruit, gr. nat. et sa coupe transversale, deux fois augmentée, montrant trois faisceaux de vaisseaux dans les carpelles fertiles et un dans les stériles.

TAB. VII

Epidendrear Lindl.

Fig. 1.-Cattleya Mossiae Hook. Coupe d'un fruit pea développó, gr. nat. Les carpelles stériles avortent, on n'a figaré gue leurs faigceaux de vaisseaux divisés on deux groupes. Dans les fertiles, du groupe de trois, et qui forment le triangle, celui du sommet se subdivise les subdivisions allant occuper les bords des carpelles.

Fig. 2.-C. Schilleriana Rchb. fil. Le fruit et la coupe transversale, gr. nat. Dans celui-ci les groupes de vaisseaux et des trachées des carpelles fertiles sont divisés, les deux latéraux de la base du triangle, vont aux cotés et celui du sommet' vient en avant. Les faisceaux des carpelles stériles se subdivisent aussi en trois, disposés on triangle.
Fig. 3.- C. Loddigesii Lind1. Le fruit et sa coupe, gr. nat. Les subdivisions des trois faisceaux, sont ici différentes encore. Les trois faisceaus des carpelles fertiles, qui sont disposés en triangle, se subdivisent, les latóraux se divisent on quatre disposés en ligne et celui du sommet se divise triangulairement on trois. Ce groupe qui correspond a la carpelle stérile, solidifiée aux fertiles, avec cette subdivision de vaisseaux se montre tout semblable aux trois faisceaux des carpelles stériles libres, qui se subdivisent aussi en trois.
Fig. 4.- C. fragrans Barb. Rod. Une section d'un fruit pen développé. II a les trois faisceaux des carpelles fertiles très-divisés ; les deux de la base du triangle subdivisés en six et celui du sommet on trois. Les carpelles stériles ont. leurs faisceaux divisés on cinq.

TAB. VIII

Epidendreae Lindl.

Fig. 1.- Laelia Perrinii Lindl. Le fruit peu développé et une section transversale, gr. nat. Par la section du fruit on voit que les trois faisceaux de trachées des carpelles fertiles se sont subdivisés, ne laissant, organogéniquement, d'être disposés en triangle, comme dans la fig. 3. de la tab. V.; néanmoins, ici les faisceaux latéraux se sont subdivisés en quatre parties, disposés on ligne droite se dirigeant vers les cótés et le faisceau du sommet du triangle divisó, aussi, en quatre parties, trois se sont disposés en ligne et une a passée en avant pour se placer entre les deux faisceaux latéraux. Les carpolles stériles montrent leurs faisceaux également divisés en quatre parties disposées comme celles de la carpelle sterile qui couvre les fertiles. Ceci nous confirme qu'au dos de celles-ci, il y en a une autre de même nature des stériles.
Fig. 2. - L. rupestris Lindl. Fruit développé et la coupe transversale, gr. nat. Les carpelles fertiles présentent trois faisceaux de trachées disposées en triangle, celui du sommet étant divisé en trois parties. Dans les carpelles stériles nous voyons leurs faisceaux divisés en deux. Dans cet exemple il n'y a que les carpelles stériles dont les faisceaux se divisent.

Fig. 3. - Leptotes bicolor Lindl. Frait peu développé et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de trachées disposés en triangle, et un dans les stériles.

Fig. 4. - Sophronitis cernua Lindl. Fruit développó et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de traciées disposés en triangle, mais celui du sommet, qui correspond aux carpelles stériles sont divisés on trois. Les carpelles stériles n'ont qu'un seul faisceau chaqu'une.

Fig. 5. - Laelia chantina LindI. Section d'un fruit peu développé gr. nat. Elle a les vaisseaux de la base du triangle des carpelles fertiles divisés en trois parties et coux du faisceaux du sommet réunis en un seul faisceau, mais laxement. Ler carpelles stériles ont les vaisseaux divisés aussi en triangle, mais à sommet interverti.

TAB. IX

ERIDENDREAE ET VANDEAE LINDL.

Fig. 1.-Schomburgkia crispa Lindl. Un fruit très-jeune et une section transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de vaisseaux en triangle et les stériles n^{\prime} ont qu^{\prime} un seul.
Fig. 2.-Tetragamestus modestus Rechb. fil. Le fruit dèveloppé avec une section, deux fois augmentée. Toutes les carpelles ont un seul faisceaux do trachées.
Fig. 3.-Isochilus lineares R. Br. Ibidem
Fig. 4.-Cattleya Schilleriana. Lindl. L'ovaire, non fécondé, augmentó deux fois, pour qu'ou puisse le comparer avec les fruits.
Fig. 5-6 AEranthus sp. Je conserve et j'ai dejá dessiné deux espèces tres-semblables par ls facies, mais dont les fruits s'éloignent par la grosseur. Je ne les ai pas encore déterminées, mais je présente ici les dessins des fruits, gr. nat. avec leurs sections, l'une augmentée deux fois et l'autre quatre. Les carpelles fertiles latérales sont intimement liées n'en formant qu'un seul corps, qui a la maturité s'ouvrent en deux valvales.
Fig. 7.- Maxillaria coriacea Barb. Rod. Des sections d'an fruit et du gynostème, le premier développé et de gr. nat. et le second augmenté deux fois. Les carpelles fertiles latérales sont liées en un seul corps, et les triangles des vaisseaux, qui sont subdivisés, ont les sommets intervertis. Les faisceaux latéraux se divisent en deux, et de celui du sommet se détache une trachée qui so place au centre formé par les divisions des latéraux. Les faisceaux des carpelles stériles se divisent aussi en six parties ot le fruit a'ouvre on deux valvules.
Fig. 8.- M. uncata Lindl. Un fruit, gr. nat. et une section horizontale, augmentée deux fois. Les vaisseaux des carpelles fertiles sont unis dans un seul faisceau circulaire, mais pas intimement, et ceux des carpelles stériles sont unis dans un seul faisceau, aussi, mais très-intimement.

Fig. 9.-M. longipetala Barb. Rod. Sections transversales d'un fruit et du gynostème, augmentées deux fois. Les carpelles fertiles ont les faisceaux des trachées disposés on triangle, mais, les deux latéraux, qui correspondent aux carpelles vraiement fertiles, divisés en deux parties et celui du sommet, qui appartient à la carpelle stérile qui les unit en entier. Les carpelles stériles ont leurs faisceaux divisés en six parties dontl'une n'a que deux trachées.

Fig. 10.-M. squalens Hook. Fruit développé, gr. nat. et des soctions du même et du gynostème, deux fois augmentées. II a les vaisseaux réunis dans un seul faisceaux dans chaque carpelle.

Fig. 11.-M. phoenicanthera Barb. Rod. Un fruit avec une section, gr. nat. Les carpelles fertiles ont trois faisceaux disposés en triangle et les stériles n'ont qu'un seul.

TAB. X

VANDEAE LINDL.

Fig. 1.- Maxillaria leucaimata Barb. Rod. Un frait, gT. nat. et des sections transversales du même et du gynostème, deux fois augmentées. Dans ce fruit on voit clairement les vaisseaux, qui des carpelles fertiles s'en vont aux pótales et au gynostème, ainsi que ceux des stériles qui vont aux sépales et au gynostéme également. Les carpelles fertiles ont les deux faisceaux latéraus très-unis dans un seal et ceux du sommet du triangle (des carpelles stériles) divisés en trois parties; celles-ci vont aux pétales. Dans les stériles, libres, les faisce7ux se divisent on deux, l'un se subdivise en cinq et vont aux sépales et l'autre en trois qui vont aux étamines.
Fig. 2.-M. rufescens Lindl. Un fruit très deivoloppé et des sections du même et du gynostème, tout gr. nat. Tous les vaisseaux sont réunis dans un seul faisceau, dans chaque carpelle.
Fig. 3.- Trigonidium macranthum Barb. Rod. Le fruit, gr. nat. avec une section du même ot une autre du gynostème, deux fois augmentées. Il présonte dans les carpelles fertiles deux faisceaux do yaisseaux pas très-unis et celui qui ordinairement forme le sommet du triangle, subdivisó en sept parties, cellos-ci concourent à la formation des pétales et dans les carpelles stériles le faisceau est divisé en doux parties, l'une (l'extérieure) subdivisée en sept aussi et qui yont aux sépales.
Fig. 4.- Dicrypta Bauerii Lindl. Un fruit et une section horizontale, du mème gr . nat. et une section du gynostème deux fois augmentée.

Les carpelles fertiles ont leur triangle de vaisseaux divisés. Les faisceaux latéraux se divisent et contribuent chacun avec des vaisseaux qui s'unissent mutuellemeut eutre eux, en formant un troisième faisceau, et ceux du sommet du triangle se divisent en trois et suivent les pátales. Les faisceaux des carpelles stériles se divisent en six parties, triangulairement, avec les sommets opposés ; celles du triangle extérieur vont aux sépales.
Fig. 5. - Dicrypta irisphyta Barb. Rod. Un fruit, gr. nat. et des sections du même et du gynostème, deux fois augmentées. Cette espèce présente, dans cos carpelles fertiles, le triangle des faisceaux de trachées modifié, les faisceaux latéraux s'unissent intimement et ceux du sommet se divisent en cinq parties. Dans les carpelles stériles, les faisceaux se divisent en cinq parties aussi, on concourant aux sépales, comme ceux des carpelles fertiles concourent aux
pétales.

TAB. XI

Vandeae LindL.

Fig. 1. - Oncidium trichodes Lindl. Un fruit trèsdéveloppé et \&я section, gr. nat. Dans chaque carpelle tous les faisceaux de vaisseaux sont reunis dans un ssul.
Fig. 2.-O. pumilum Lindl. Ibidem.
Fig. 3.- O. sarcodes. Lindl. Fruit développé et une coupe transversale, gr. nat. Les faisceaux des vaisseaux des carpelles fertiles s'unissent làchement dans un seul faisceaux et ceux des carpelles stériles se divisent en trois, triangulairement.

Fig 1. O. raniferum Lindl. Fruit. gr. nat. et une coupe horizontale, deux fois grossie. Prósente la conformation de celui de la fig. 2.

Fig. 5.- O. flexuosum. Lindl. Ibidem.
Fig. 6.-O. divaricatum. Lindl. Ibidem.
Fig. 7. - O. crispum Lodd. Fruit et section deux fois grossis. Les carpelles fertiles ont les faisceaux de trachées en triangle et les stériles divisés en deux groupes.

TAB. XII
Vandeaz Lindl.
Fig. 1.- Oncidium pubes Lindl. Une frait, gr. nat. avec la section deux fois grossie. Les carpelles fertiles ont leurs faisceaux réunis intimement, mais avec la conformation triangulaira, et les carpelles stériles leurs faisceaux divisés en deux groupes, sans se séparer l'un de l'autre.

Fig. 2.- Miltonia Russelliana Lindl. Des sections de lovaire et du gynostème, celle-ci grossie deux fois. Les carpelles fertiles ont les faisceaux dispos jes en triangle et les stériles, divisés en deux groupes.

Fig. 3. - M. Cloroessi Rchb. fil. Un fruit, gr. nat. des sections de l'ovaire et du gynostème, deux foís augmentées. Il a la même conformation de l'espèce ci-dessur.
Fig. 1.- M. Alavescens Lindl., M. spectabilis. Lindl. et M. Regnellii. Rchb. fil, présentent la même disposition des vaisseaux de l'espèce ci-dessus.
Fig. 5. - Aspasia lunata Lindl. Un fruit et des sections du mème et du gynostème, deux fois grossis. Il a les faisceaux des vaisseaux dans les carpelles fertiles divisés en trois et disposés on triangle, mais ceux des carpelles stériles réunis dans un seul faisceau.
Fig. 6. - Bifrenaria fragrans Barb. Rod. La section de I'ovaire deux fois grossie.
Les vaissesux des carpelles fertiles forment un trianglo a sommet interverti; c'est-a-dire les faisceaux de la carpelle stérile rentrent, le triangle se diviso: les faisceaux latéraux se divisent on quatre parties, et ceux du sommat se divisent en trois, formant une ligne qui sópare les carpalles fértiles. Los faisceaux des carpalles stóriles libres se divisent en deux groupez, mais colui de la portion extérieure se subdivise en quatre.

Fig. 7. - Zygopetahum Mackayi. Hook. Coupe d'un fruit, gr. nat. et des sections du mème et du gynostèm3, deux fois grossies. Dans toutes les carpelles les vaisseaux sont réanis ou un seul faisceau.

Fig. 8.-Cirrhaea tristis Lindl. Section d'un fruit, pou développé. Ses vaisseaux offrent les même disposition, que l'espère ci-dessus, soulement les yaisseaux dans les carpelles fertiles s ant disposés on ligne.

TAB. XIII

VANDEAE ET OPHRYDEAE

Fi5. 1. - Zygopetalum brachypetahum Lindl. a leurs vaissesux disposies comme dans le Z. Mackayn (Tab. XII fig. 7.)

Fig. 2. - Cyrtopera polyantha Bärb. Rod. Un fruit développé et la section transyersale, gr. nat. En conservant les faisceaux des carpelles fertiles la disposition triangulaire, néanmoins le faisceau du sommet du triangle, celui de la carpelle stérile, so diviso on deux on se subidivisant encore le groupe le plus extérieur, ce qui a lieu aussi dans les stériles libres.

Fig. 3.-Warscewoicsella digitata. Barb. Rod. Un fruit, une section da même et une autre du gynostème; tout gr. nat. Les vaisseaux. sont unis faiblement en trois faisceaux, disposés en triangle, mais dans les carpelles stériles ils forment un seul faisceau.

Fig. 1.-W. cochleata Rchb. fil. Un fruit et une section, gr. nat. Le triangle des faisceaux dans les carpelles fertiles a le sommet divisó en trois parties, triangulairement aussi. Dans les carpelles stériles, les vaisseaux sont divisés on deux groupes, se divisant au plus extérieur en trois triangulairement, présentent cette symétrie de l'analogie entre elles et les carpelles du dos des fertiles.
Fig. 5. - Lockartia lunifera Rchb. fil. Un fruit développó et la section deux fois grossie. Toutes les carpelles présentent leurs vaisseux réunis en un senl faisceau.
Fig. 6. Masdevalia aristata Barb. Rod. Il a la même disposition des vaisseaux que l'espèce ci-dessus.
Fig. 7.- Habenaria Josophensis Barb. Rod. Toutes les carpelles ont leurs vaisseaux réunis en un seul faisceau.

$\frac{1}{2}+$
 $\frac{32}{2}$

\square
25%

STRuCTURE DES ORCHIDEEES

NOTES DUNE ÉTUDE

Cheralier do l'Ordro de S. Thiago da Espads, du mérito solentififus et iltéraire; Membre do IInstitut historique du Brésil ; do I'Académio Royale
dos solunces de Lisbonnó; de la sociétó botanique Impériale et Rogalo de Vienne; dos soclétés botaniquo d'Edimbourg, des naturalistes do Fribourg, dhortloulture do Marselile, oto. oto.

Publié sous les auspices du Ministère des Travaux Publics

RIO DE JANEIRO
TYPOGRAPHIE NATIONALE
1883
$38-83$

AVERTISSEMENT

Je publie ici les notes que j’avais réunies dans une lettre adressée à mon ami le savant botaniste brésilien Mr. le Conseiller Baron de Capanema.
Dans ces notes se trouvent enregistrées les observations que j’ai faites à différentes époques, et qui justifient mon opinion sur la structure des fleurs des orchidées, copiées à mesure qu'elles me tombaient sous les mains.

Le Gouvernement Impérial ayant ordonné la publication des diagnoses de mes orchidées nouvelles, guidé par les conseils de quelques amis, et profitant de l'occasion, j'ai publié cettelettre qui n'a pour but que d'aider ma memoire. N'ayant pas du temps ni de coordonner ou même refondre mes idées on y remarquera le manque d'unité, mais je crois que le lecteur bienveillant voudra bien m'excuser.
Je donne ici un témoignage public de gratitude à Mr. le Conseiller José Antonio Saraiva, Président du Conseil des Ministres, ainsi qu'à Mr. le Conseiller José Julio d'Albuquerque Barros, son Officier de Cabinet, qui ont pris tant d'intérêt aux humbles travaux de

P'Auteur

STRLCTURE DES ORCHIDÉES

Mon cher Conseiller.

Je viens occuper votre attention pendant quelque temps, pour vous obliger à faire des observations qui puissent conffrmer ou détruire celles que j'ai faites sur les fleurs des Orchidées. Je vais les lconsigner ici, telles qu'elles se trouvent dans mon cahier de notes, et je vous supplie qu'avec votre autorité de maître et d'observateur et avec la franchise qui vous caractérise vous me disiez si elles sont fondées ou non. Vous le savez, jamais je n'ai suivi l'ancien magister dixit; j'ai toujours cherché, quand je fais quelque etude, à observer d'abord pour comparer ensuite mes observations avec celles des autres. Ce que je vois, ce que j'observe, quoique allant contre les opinions des maitres, je le soutiens jusqu'au moment oú l'on me prouve 'mon erreur, parce que comme le dit Link: cautus sum in sententia mea proferenda.

Ce que vous allez lire (ecrit currente calamo) est le résultat d'une étude organogénique que j'ai faite à différentes epoques, sur plusieurs orchidees, pour mieux les connaitre.
Je commencerai par vous citer ce que le savant Darwin a écrit à ce sujet :
a The theorical structure of few flowers has been so largely discussed as that of Orchids; not is this surprising seeing how unlike they are to common flowers. No group of organic beings can be well understood until their homologies are made out; that is, until the general pattern, or, as its often called the ideal type, of the several members of the groups intelligible.,
En exposant ici la structure des fleurs des Orchidees, déjà si etudiee par de savants botanistes, mon entreprise pourra paraître audacieuse; je semblerai plus téméraire encore en presentant des résultats differents de ceux qui ont eté obtenus pour ceux qui se sont occupés de ce sujet; mais, en ne donnant ici que les données fournies par l'observation directe et qui d'ailleurs sont des plus exactes, on me pardonnera, je l'espère, ma témérite.

Une lettre ne comportant pas de grandes reflexions, je serai bref.

Depuis très long-temps, la famille des Orchidees est connue, toutefois pas autant qu'aprés la découverte de l'Amérique, mais autant que les espéces Européennes, Asiatiques et Africaines, dans le siècle passé, le permettaient, et elle toujours a fourni des sujets à plusieurs études, plus au moins philosophiques.
La fleur d'une Orchideé, qu'elle appartienne à n'importe quelle tribu, exotique ou indigène, elle se présente toujours dans la nature, soit au botaniste, soit à l'amateur,

Co qu'on observo dans une fleur des orchideés. Sa division.
sous un aspect très-simple, à l'apparence, mais qui est le résultat d'une modification congénitale.
Elle se compose de six divisions, dont la réunion forme le périanthe ou périgone des modernes, qui est distinctement composé d'un calice et d'une corolle de trois divisions alternes, en genéral coloriées, conservant plus au moins d'uniformite. Par la forme et par la structure, ainsi que par la couleur, il se détache un pétale, tepale de quel-ques-uns, qui modifié prend une autre dimension, des formes bizarres, entierement distincte de la simplicité de ses deux autres compagnes; ce pétale a le nom de labelle.
Cet involucre protége les organes de la reproduction, qui intimement unis forment, au centre, et en continuation à l'ovaire, un organe spécial, plus ou moins long et plein d'apparat.
Par sa forme, il est connu sous le nom de colonne ou gynostéme (1) qui lui est donné, car il sert d'union entre les mâles et les femelles. Voilá ce qu'on voit dans une fleur, ce qui détermina limmortel Linné à la classer dans la monandrie, et plus tard Jussieu, dans la monoépigynie.
Elle a êté ainsi consideree jusqưả Robert Brown, qui chercha à examiner sa véritable structure et à déterminer le nombre de ses étamines et pistils, ainsi que leur position en relation au périanthe, c'est- $\dot{\alpha}-$ dire, il a fait une étude théorique qui justifait la forme qu'en réalité présente la fleur, modifíe de ce qu'elle devait être.
Son étude a eté la clef qui a ouvert le chemin pour les autres et son résultat a eté peu modifié ensuite. Ses observations, qui ont eté publiées dans les Transactions of the
(1) Kuvì-pistil, σ वrf|uwv, ótamino.

Linnean Society, (1) se résument ainsi: la fleur se com-

Opinion do
Darwin. Darwin.

Opinion du Dr.
Lindloy.
pose de trois pétales, de six étamines, disposés en deux ordres de verticilles, dont celuidu verticille extérieur est fertile, et de trois carpelles, dont l'une par modification forme le rostelle. Ces quinze organes sont disposés en cinq verticilles alternes, trois à trois.
Le Professeur Brown, croit que trois de ces étamines se combinent avec le labelle. L'orchidologiste anglais, John Lindley, au commencement, adopta l'opinion de Brown, mais plus tard, relativement au stigmate et sa position il la modiffa, c'est-d́-dire, il était dans le vrai et il passa au faux, comme nous le verrons plus tard. Voilá ce qu'il dit: «While, in sommon with Dr. Brown Iregarded the stigmate as really consisting of confluence I also supposed the position of the stigmata to be opposite the petals... The opinion I now retracte in consequence of the position of the stigmata in Cypripedium, which C. spectabilis hence most clearly to be opposite sepals.»
Le professeur Lindley en donne ainsi les caractères: «stigmata saepius in discum mucosum cavum nunc prominentem con fluentia; dorsale in marginem superiorem glandulis 1-2 in Vandeis Neotteisque separabilibus instructum, saepe in rostellum elongatum.. .. ; lateralia in plurimis obsoleta nunc basi labelli appendicis s. lamellarum callorumve formã adnata.»
Il y a déjà une vingtaine d'années que Charles Darwin êtudiant homologiquement les fleurs des orchidées après des études anatomiques, faites sur des espéces, la plupart Europeennes, établit une autre theorie et présenta une autre structure, qu'on comprendra mieux par le

[^5]diagramme ci-joint, avec les explications qu'il en donne.

J'observe, pour completer les vues de Darwin, que les petits cercles inclus dans les ares, qu'indiquent les sépales et les pétales, sont des faisceaux des trachées. Je n'expose pas ici largement l'opinion de Ch. Darwin parce qu'elle est dans le livre que vous connaissez trés-bien,

Pig. I-SS. Sifgmates. Sr, Stgre ate modifio pour former to rostellum. A 1. Anthere fertile du vertioille extérieur. A \&. A 3. Anthères du uetne rerifilo combintes arce le petalo fnffrieur pour former le labellum, a 1. a. 9. Anthì res rudimentaires du verticillo Intírieur formant généralement lo clinandre, fertiles dans to Cypripediam, a 3. Troisì̀me anthère du même rortioillo gul, quand il existo, forme lo derant do la colonn-.
intitule: On the oarious contrivances by which british and foreing orchids are fertilized by insects, (1) et y vous la verrez.
Voilà les opinions, excepté celle de Blume, sur la structure des orchidees, mais, qu'en me guidant d'après
(1) Un volume in-60, London, 1826.
l'harmonie générale de la nature et pénétré do la vérité de la maxime Linnéenne que la natura non facit saltus, je ne pouvais pas admettre. L'étude que je faisais sur des fleurs, sur de jeunes boutons, sur des fleurs fécon-

Mes doutos.

Difficulté do l'ótudo. dées, ainsi que sur des fruits, me rendait perplexe. Quelques fleurs me semblaient vouloir confirmer les résultats connus, mais d'autres en présentaient de différents, ce qui m'obligeait à rejeter ce qui était déjà établi, quoique affirmé par des opinions autorisées. Á la fin, aprés plusieurs études anatomiques, en sections transversales, et en sections verticales, il me sembla que j'etais arrivé à détacher les organes que je cherchais et à séparer leurs respectives positions.
L'union intime des organes rend extrémement difficile leur séparation, et on ne peut le faire qu'avec l'aide de deux microscopes où simultanèment on observe les coupes transversales et longitudinales.

Quiconque étudie, même légèrement, une orchidée, fera tout de suite cette reflexion : comment un organe femelle, peut-il se terminer en mâle? Je m'explique, avant d'exposer le résultat de mes observations.

En prenant une fleur d'orchidée quelconque, on remarque dans son ovaire six divisions, dont trois placentiferes, qui correspondent aux trois petales, et trois divisions steriles, aux sépales.
Eh bien, celles qui doivent correspondre aux trois stigmates, se présentent opposées aux sépales dans le gynostème, ce qui est d'accord avec Lindley et Darwin. Mais, comment explique-t-on cette transposition d'un organe contre la loi de l'alternance? Le gynostème est creux en dedans, c'est-à-dire, il a un cunicule qui se prolonge jusqu'á l'ovaire ; comment donc expliquer le passage d'un organe de la face vers le còté opposé sans que celui-ci traverse au dessus de l'ouverture cuniculaire?

C'est ce que tout d'abord, j'ai tâché d'etudier, me basant sur l'harmonie de la Création, ne pouvant pas pour cela accepter, sans controle, l'opinion des maîtres celébres.
Je présente le diagramme que j'ai établi, fondé sur mes observations, qui pourront n'ètre pas vraies, mais qui ont été consciencieusement faites et qui expliquent beaucoup mieux l'anomalie des fleurs en question, comme vous le verrez plus loin.

Fig. II,-E. E'tamines qui forment les cotés of la face da gynostome. E' E'tamine qui formo le dos du gynostòme ot uni aux lateraux forment lo olinandre. E. - E'tamines qui subdirisies formont non seulement les cotés que les staminodes, eto. S., Stigmates unis, fertiles dans 10 Cypripedium. S." Stigmate dorsal quil formo lo rostele.
Avant d'y arriver, il me convient de faire une observation. On a etabli pour les végetaux ligneux un nom pour désigner le point où la tige se sépare de la racine, pourquoi n'etablissons nous pas aussi un nom pour indiquer la séparation entre l'ovaire et le calice, quand celui-ci est distinct et ne peut pas être confondu avec des bractés?

Plan divisoiro entre l'ovairo ot lo calico des orchidếos. Mézaulhe.

Harmonio. Modifications sans étro motivíos par les férations.

Dans les orchidées, le calice a toujours une ligne de séparation bien nette, ligne qui est occupée par un calicule dans les genres Episthephium, Lecanorchis et dans quelques Vanilles, pourquoi done ce plan de division, ne porte-t-il pas un nom pour l'indiquer? Dans ce moment, par exemple, l'absence d'un nom m'embarasse pour pouvoir clairement et naturellement expliquer la position des filets des stigmates, et, dans ce cas, je n'ai pas hésité à créer un nom pour la ligne ou plan de division entre l'ovaire et la racine du calice. Pour cette ligne, je propose donc le nom de mezanthium, on mézanthe, dont l'origine grecque vient de μ ícoo, milieu et avoos, fleur. Aprés cette remarque je crois pouvoir continuer.
Comme nous le savons, les unions des organes floraux sont trés-communs parmi les monocotylédonées; la loi organogénique et celle de l'alternance ne sont jamais démenties, quand on connait bien la morphologie vegétale et pourtant guidé par ces principes établis dans la science et par ce qu'on voit dans la nature, je suis arrivé à un résultat, quoique contraire à celui déjả connu, mais qui nous montre bien les modifications par lesquelles a passé une fleur d'orchidée, pour arriver à l'etat où on la voit aujourd'hui ; c'est-à-dire, sans les modifications des gerations, mais comme telle qu'elle est sortie des mains du Créateur, qui, dans sa sagesse, nous présentant ce que nous voyons naturellement, n'a pas laissé, au fond, de suivre organogeniquement le type établi, qui caché on peut néanmoins le démasquer.
Nous pouvons considérer une fleur d'orchidée comme une fleur anomale, car l'anomalie, selon la bonne définition de Sainte-Hilaire, n'est qu'un autre arrangement qui a ses limites et ses régles, en nous offrant des transitions d'un ordre habituel pour un autre nouveau. En considérant bien l'anomalie, elle n'entre pas dans les faits
tératologirues, car jamais elle n'attaque la santé du végétal.
En faisant une section horizontale dans l'ovaire d'une orchidée, on voit facilement qu'il est composé de six carpelles et nonde trois, quoiquil presente trois placentas seulement. Pour n'en admettre que trois, comme en genéral les placentas occupent les bords des feuilles carpellaires, et non la nervure médiane, nous aurons trois placentas occupant les bords des feuilles carpellaires et la déhiscence du fruit se faisant par les nervures, ce qui n'a pas lieu dans ce cas et mème ce fait est trés-rare dans d'autres fruils. Outre cela, dans l'ovaire uniloculaire, les placentas pariétaux ne peuvent pas, d'aucune maniere, laisser d'appartenir à deux carpelles différentes, par conséquent trois placentas représentant six carpelles. Nous avons alors six carpelles, comme nous le verrons mieux plus loin, mais outre ces six, nous voyons encore en plus trois divisions stériles et nous observons encore sur le dos des carpelles fertiles quelque chose qui les modifie toujours, ce qui, d'aprés la loi de la symétrie, nous permet de dire que la fleur contient douze carpelles. (Fig. III. a. b. c.)
Cela nous semblerait absurde, si nous ne savions pas que deux verticilles peuvent se lier intimement en nous présentant de nouvelles formes et une nouvelle consistence. Ainsi, le type primitif de ces fleurs, s'il a existé, ce dont je doute, devait être composé: d'un calice de six sépales (Fig. III b. c.), d'une corolle de six pétales (a.), d'un androcee de six étamines (d.) et d'une gynécee de six stigmates, (E.) groupés par trois.

Il semble que cette hypothèse est contraire à ce qui est établi, c'est-à-dire, que le nombre trois caracterise les monocotylédonées, mais je ne m'eloigne pas de ce principe, tant que le nombre trois est celui que je

Trois valvulot qui corrospondons a six carpellos.

Typo théorique d'uno fleur.
présente prédominant dans les verticilles de la fleur, comme nous la voyons aujourd'hui.

En recherchant les parties qui la constituent, je rencontre le nombre trois, mais venant de six, ce qui ne fait pas exception á la loi, parce que ce fait le confirme, présentant clairement des verticilles de trois organes.

Les feuilles carpellaires en formant un verticille au lieu de se souder par les bords, ont souffert une compression qui a servi á les diviser en deux, six en cercle exterieurement (b. c.) et les autres six en dedans. (a.) Lá commence l'anomalie avec l'union des unes avec les autres, en formant les deux verticilles au sommet de l'ovaire et un à la base.
Les six qui sont devenues intérieures, alternativement, se sont soudées deux à deux et ont conservé la proprièté reproductrice, pendant que les six extérieures, trois sont devenues steriles et trois sa sont liees intimement aux intérieures, protégeant les bords liés, oú les placentas se présentent, en déterminant ainsi la forme qu'elles offrent aujourd'hui.

Voyez le diagramme que j'ai établi pour l'ovaire et le gynostème.

Dans quelques Epidendres, (Encyclium) nous rencontrons clairement la preuve que les trois des six carpelles stériles se lient avec les six fertiles. (Tab. II. fig. 3-4.)

Exemplo de donzo carpolles.

En prenant le fruit de l'Epidendrum odoratissimum on voit que les six carpelles fertiles (a.a.) sont lisses extérieurement, pendant que les trois steriles (b.b.) sont granuleuses; et bien, dans l'union des carpelles fertiles, opposées aux cordons placentifères, existe une raie profonde, dans chacune des paires, dont la concavité est granuleuse, comme les trois carpelles stériles et nous montrent qu'elles sont de la même nature.

Qu'elles sont de vraies carpelles et non des nervures carpellaires nous en trouvons la preuve dans le Dichaea coriacea Barb. Rod. (Tab. II. fig. 6.) Cette espéce,

Uno prouve oxompliffée qu'olles sont dos carpolles ot non des nervares carpollairos. originaire des montagnes du Rodeio, à Rio de Janeiro, ainsi que de Minas Geraes, est venue me montrer que ces carpelles ne sont pas toujours steriles, et que toutes sont

Fig. III.-a. Les carpelles qui so lient et so rendent intérleures et placenifères. b. Les carpelles qui so llent en courrant la suture des intérieures. e, Les carpelles qui devionnent stérlles. d. Etamines qui s'unlssest en trols. e. Stigmates unis, Les lignes polatiliées montront le changement dos carpelles et la direction des étamines qui a'unissent.
propres à être ovolifères. En prenant son ovaire, ou mieux son fruit, en y faisant une coupe transversale, on voit que toutes les carpelles se sont intimement liees, et qu'il n'en reste qu'une de libre, celle du dos, justement l'une des trois qui sont toujours stériles. L'union de celles qui sont fertiles avec les deux autres stériles, est faite d'une telle manière, que ni le parenchyme, ne le

Mollfications qu'ont souffert 10 calice ot la corollo on 80 transformant on périantho.

> Les organes qui composent uno
revèle, car leurs positions sont distinctes si on les compare avec celle du gynostème, et aux faisceaux des vaisseaux vasculaires. La carpelle qui dans toutes les espéces est toujours stérile, est ici fertile, et les deux autres deviennent aussi placentifëres, pendant que celles qui sont toujours fertiles, deviennent steriles. C'est lả une exception, mais qui vient nous prouver, que nous ne poulvons les prendre que pour de vraies feuilles carpellaires. En faisant aussi exception parmi ses compagnes, elle présente ses stigmates sans la torsion, que nous verrons plus loin, et sont placés en s'opposant aux sépales, l'ovaire et le rostelle n'etant formés que par la dorsale seulement. Cette espéce en faisant exception, interrompt la loi de l'alternance, et devient plus anomale, mais cette anomalie vient porter une vive lumière dans la question.
Pour prouver que les trois valvules, considerées jusqu'á ce jour comme trois carpelles, sont au nombre de six et non de trois, je montre la coupe transversale de l'ovaire du Sarcoglottis ornitliecephala. Barb. ${ }^{〔}$ Rod., l'ancien Serapias fascculatia Vellozo, copiee du naturel et augmentée deux fois. (Tab. II. fig. 1. 2.)
Aprés ces exemples qui sont venus à propos, je vous montrerai les autres modifications.
Le calice et la corolle ont souffert aussi des modiflcations dans le nombre de leurs divisions, ainsi que dans leurs positions. Des six sépales, trois ont avorté, et des six pétales trois sont unies aux autres, le calice demeurant tri-sépale, par avortement, et la corole tri-pétale, par l'union. L'androçe et le gynécée se sont unis aussi et en ont formé le gynostème. Par le diagramme que j'ai déjà présenté on saisit bien ces transformations.
Par mes observations, je conclus donc, que théoriquement, comme dans la phrase de Darwin, que le type
primitif d'une fleur orchidacee a eté composé de vingt quatre organes et non de quinze. Un calice avec six sépales, dont trois sont avortés; une corolle à six pétales, dont trois onl été réunis, ceux-ci en alternance avec ceux-lá. Des ces pétales, le supérieur, mais qui par la torsion de l'ovaire devient presque toujours inferieur, a pris une forme spéciale qu'on a nommé labelle; de douze organes reproducteurs plus ou moins modifiés et lies, disposés en trois cercles concentriques, dont six sont les étamines et les six autres réunis en trois faisceaux, forment les styles.

Quand on fait une coupe transversale dans la base d'un ovaire, d'un bouton peu développé, on y voit neuf faisceaux de vaisseaux et trachées en deux verticilles, dont les extérieurs sont plus grands. En poursuivant les coupes, de bas en haut, on remarque que ces vaisseaux, présentant les deux verticilles, sont devenus plus développés et subdivisés, mais qu'en arrivant au mézanthe, la coupe nous montre six divisions déjả bien distinctes, en présentant celles qui en général sont placentifères, trois faisceaux chacune et les steriles, un seulement. Si nous poursuivons les coupes nous voyons que parmi ces vaisseaux, les uns rentrent dans les sépales et pétales, et les autres vont au gynostème. Chaque groupe de vaisseaux représente une carpelle, par conséquent nous avons trois valvules avec un seul groupe chacune, et trois, ayant trois groupes chacune, ce qui nous donne douze groupes. Chaque groupe se compose de deux faisceaux de trachées, l'un placé devant l'autre. Je vous ai montré comme je considère l'union des trois carpelles placentifères n'en formant qu'une, je vous montrerai maintenant comment ces vingt quatre faisceaux se subdivisent. Des carpelles steriles, sortent deux faisceaux, l'extérieur va en se subdivisant aux sépales

Numero dos vais. soaux qu'on roncontro dans un ovairo ot lours directions.
et l'intérieur, forme une étamine, ce qui nous donne déjá trois êtamines. Des carpelles fertiles, (les trois unies) celle du dos, fournit aux pétales un faisceau et l'autre au gynostème, ce qui nous donne encore trois étamines, et porte le nombre à six. Celles-ci, forment deux verticilles, l'intérieur étant compose de trois faisceaux des carpelles fertiles unies aux steriles et l'extérieur avec ceux des stériles seulement. De chaque groupe des carpelles fertiles unies, sortent des laterales quatre faisceaux, deux vont aux petales et deux s'en vont aux pistils, en nombre par consequent de six. Ceux-ci se groupent en trois corps formant un triangle dont la base est opposée au labelle.
Les etamines, suivent la loi de l'alternance, elles sont opposées aux pétales, quoique apparemment elles paraissent l'être aux sépales.
De ces six étamines, il n'y a que le groupe latéral droit (après la torsion que nous verrons) ou le latéral gauche et antérieur, dans le genre Cypripedium, qui sont fertiles.
Les vaisseaux des étamines se divisent irregalièrement au mézanthe et vont, en quelques espèces, non seulement au gynostème qu'au labelle, oú ils forment les lamelles, les caroncules, les tubercules et lui donnent les formes bizarres que quelque fois il presente. Il m’a eté impossible de déterminer le nombre des vaisseaux, dans cette subdivision, car il varie selon les espéces. Dans quelques espéces, ils se subdivisent depuis les carpelles.
Reprenons encore l'ovaire afin de rendre plus clair notre sujet. Dans ses Genera et species, le professeur Lindley en traitant de l'ovaire, nous dit: carpellis 6 constans, quorum 3 petalis opposita placentas didymas polyspermas parietales gerunt, mais plus tard au sujet du
fruit (1) il nous dit qu'il a trois valvules et trois nervures.

Voici son diagramme:

Fig, IV

Robert Brown n'en donnait que trois aussi, et cette opinion est suivie par les professeurs Endlicher, Balfour, Payer, Sachs, etc.
(1) School botany. 1862. pag. 131.

Composition do l'ovaire. Cils qui favorisont la disportion dos somoncos.

Je présente ici les diagrammes de Balfour et Sachs:
Pour moi, je peux étre en erreur, l'ovaire est composé de 12 carpelles, comme je l'ai déjá dit, dont 6 toujours avortent en se soudant et se sterilisant, et 6 se soudent par un bord tandis que l'autre reste sous les carpelles steriles, se touchant légèrement. Le bord ne s'entortille pas comme ceux des placentifères, et ne se sterilise pas, mais

Fig. V. $-a$, Axe do lopl des fours. pe. Pírlanthe exteriour. pi, Doux divisions du périanthe Intericur. d. Troisićmo division du périanthe $^{\text {a }}$ intériour. E. Anthère fertile. SS. Deur anthàres arortćes ous taminodes, O. Oralre.

Fig. V1.-Les polnts noirs marquent les Ctamines compldtemeut absentes, les ronds ombrés sont ceux qui semblent destincis a avorter ples tard pour se transformer en ctamiaodes.
produit, au lieu de placentas, des cils soyeux, dont les extrémités touchent les placentas. A la maturité du fruit, ces cils se detachent et, par un mouvement propre, ils se lévent, pour arracher les semences et les jeter au dehors. Les six autres, contiennentdes placentas parietaux et polyspermes, à la suture, entre la courbature|des deux bords que s'unissent.
Du canal formé par la courbement des feuilles carpellaires prennent naissance six cordons, d'un tissu conducteur, qui au sommet se lient à ceux des carpelles contiguës, en formant un groupe de trois au gynostème. Toutes

21 -

les carpelles restent de cette maniëre en communication les unes avec les autres et toutes liees mutuellement par les stigmates. Aprés la fécondation les stigmates se touchent toujours et ne forment qu'un seul corps glutineux et nous laisse voir les tissus conducteurs gonfles.
Me basant, donc, sur l'autorité de ces mêmes botanistes, en définissant les carpelles, je ne peux pas admettre que l'ovaire d'une orchidée soit composé de 3 ou 6 carpelles, si toutefois mes observations ne sont erronées. Voyons. Qu'est-ce que c'est qu'une carpelle ? Physiologiquement, c'est une feuille modifiée, qui, comme les sepales et les petales peut se lier à une autre. (1) L'union des carpelles les unes aux autres, peut se faire ou en unissant les bords du limbe seulement, ou soudant un peu les bords par le dos, ce qui les oblige à se courber intérieurement. La ligne de l'union nous montre leur nombre, et c'est dans cette union que se présentent les placentas et non sur la ligne qui correspond à la nervure médiane ; par conséquent, autant de placentas nous rencontrons dans un ovaire, autant de carpelles il y aura. Par les sutures, trés-souvent, on ne peut pas distinguer les carpelles, car elles disparaissent par la fusion des deux, que cependant le parenchyme dénonce.
Dans l'ovaire d'une orchidée, on rencontre six valvules, c'est vrai, mais les trois placentifêres sont plus grandes et quoique intimement unies, on voit qu'elles se composent d'autres trois, que nous distinguons par les placentas etpar le tissu cellulaire. Celui-ci nous montre que chacune a un des bords si atrophie, roule et lié qu'il arrive presque à la ligne de la nervure médiane. Les autres bordsse touchent légérement sous les trois

[^6]Qu'est-co qu'une carpollo 9
autres valvules, plutôt des carpelles stériles. Que pourraient donc être ces valvules sinon des carpelles avortees ou incomplètes ? Quel organe est-ce donc celui qui lie les carpelles? Si nous considérons ces trois valvules, qui dans le fruil restent adhérentes, comme des nervures des feuilles carpellaires, comme le veut le professeur Lindley, et qui se détachent, nous n'aurons qu'á admettre que trois carpelles, hypothése à laquelle s'op-
${ }_{\text {pistil. }}^{\text {Composition }} \mathrm{du}$ pistil. pose la structure anatomique des memes.
Il nous semble, donc, hors de doute, que le pistil des orchidees est composé de 12 carpelles, dont trois bien distinctes par leurs placentas, qui nous montrent parfaitement six carpelles unies et six incomplètes, qui par avortement ne produisent pas les parties qui constituent les mêmes, en formant un corps spécial. Dans quelques espèces, ces carpelles ont aussi des placentas rudimentaires, quand elles se présentent avec la face interieure en dedans. De ces douze carpelles, par leur union, elles ne présentent que six valvules, que dans un ovaire non fécondé, quelquefois, extérieurement, on n'en voit que trois, car les trois réproductrices restent protégees et cachées par les stériles, qu'après la fécondation de l'ovaire elles ne se développent pas, les autres venant alors, à être visibles en prennant aussi un plus grand développement.
Dans le Cattleya labiata, le fruit ne présente que trois carpelles placentiferes, les autres sont complètement avortées.
Les six carpelles fertiles donnent naissance à six stigmates, qui ne paraissent etre qu'au nombre de trois, par la soudure qu'ils souffrent, et dont la position naturelle n'est pas celle qu'ils présentent.
Lindley, comme nous avons vu, croyait que les stigmates étaient opposés aux pétales, mais plus tard il modifia son opinion, en les plaçant en opposition aux
sepales. Cette opinion est suivie par Darwin, comme nous le voyons dans son diagramme. Chaque carpelle contribue à former un stigmate, mais par l'union des six en trois, l'une de celles-ci fournit deux stigmates, dont les trachées passent sous le placenta. Les stigmates, en arrivant au mézanthe, les deux de la carpelle antérieure l'un se tourne à droite et l'autre á gauche, en faisant cette operation les quatre autres, et lies ainsi mutuellement celui d'une carpelle avec celui de l'autre, ils forment trois groupes, qui sont les trois stigmates, qui paraissent dans la cavité stigmatique, ou dans une coupe transversale du gynostème: malgré leur inclinaison, ils font continuation aux carpelles, mais au mezanthe ils présentent une torsion, c'est-à-dire, le stigmate de la carpelle antérieure s'incline á droite, ce qui le fait s'opposer au sépale inférieur droit, au stigmate de la carpelle latérale arrive la même inclinaison et celui de la troisième carpelle en suivant la même marche, vient s'opposer au sépale inférieur gauche, ce qui rend le triangle, naturellement, qu'ils forment, inverti par la torsion. Le sommet de celui-ci, qui est opposé au labelle, passe à paraitre opposé au sépale supéririeur, comme on voit dans toutes les fleurs orchidacees. Je crois que cette torsion n'a pas été observée, et c'est elle qui explique comment la carpelle peut avoir son stigmatedu côte opposé au cunicule.
Cette torsion est passée au mézanthe, non en angles droits, mais obliquement.

Le rostelle que tous les botanistes donnent comme formé par lestigmate supérieur, ne l'est pas, mais par le latéral droit qui devient superieur. Je cite un exemple qui peut être vérifié dans toutes les espèces, et une figure, augmentee deux fois, l'illustre. (Tab. II. fig. 5)

Examplo do la tursion des stig.
matos.

> Tissus condu. ctours.

Dans la figure de l'Habenaria Johannensis Barb. Rod. on voit linclinaison et la direction des stylets avec les positions interverties. En comparant la fig. 5 avec le diagramme de l'ovaire, dans sa positton naturelle, on voit le déplacement. Le stylet a. quise prolonge de la carpelle de face va occuper la place de la carpelle a^{\prime}.; le stylet b. la place de b^{\prime}. et le stylet c. la place de c^{\prime}., ce qui intervertit le triangle et ils paraissent opposés aux sépales, contre tous les principes organogéniques.
Chacun des stigmates est doublé d'un tissu conducteur, qui, en genéral, n'arrive pas á la base de l'ovaire, en descendant par le canal formé par lincurvation de la feuille carpellaire, couvrant tous les parois du cunicule du gynostème. Après la déhiscence du fruit, quoiqu'il soit desséché, en le mettant dans l'eau chaude, les tissus se gonflent et avec facilite ils se détachent des carpelles. Ils sont au nombre de six comme les stigmates, et se lient les uns aux autres, comme les carpelles. Dans le Maxillaria squalens Lindl. et dans l'Aspasia lunata Lindl. ainsi que dans d'autres espéces, je les ai séparés très-souvent, présentant aprés la maturité du fruit une consistance soyeuse.
La torsion des stylets est rencontrée dans toutes les sous-tribus de la famille.
Parmi les Neottiacees, le genre Sarcoglottis ne présente pas la torsion, mais la carpelle de la face avorte et forme un étui qui couvre les deux stylets, qui composent le gynostème.
Conformation d'un Sarcoglothis.

Ceux-ci font continuation aux autres carpelles en s'inclinant l'un sur l'autre à se toucher, en s'unissant par le dos et en commun formant le rostelle, qui se prolonge au delà des deux stigmates. Malgré cette modification, le triangle n'est pas interverti; toujours le rostelle est formé par les stigmates latéraux. (Tab.II. flg.1-2.)

Dans ce genre les deux carpelles stériles avortent et la fertile antérieure $c c$. prolonge les bords, qui, recourbés, s'incurvent aprés, de maniére á former les sépales inférieurs, preséntant en dedans, à l'union des autres bords, un cordoṇ placentifére. La décurrence de ceux-ci, glossologiquement, n'est autre chose que les bords des carpelles prolongees. Les figures nous montrent trés-clairement que les carpelles fertiles sont au nombre de six et non pas de trois.
Rien n'est plus variable que la structure des orchidées, qui varie non seulement dans les espéces, que dans les genres. Je neไpeux pas, pour cela, assigner avec precision la subdivision des vaisseaux que contienne chaque fleur, parce que, par la séparation il se rend presque impossible.
Les carpelles steriles fournissent les etamines, soit celles qui sont libres, soit celles qui sont liees aux fertiles, ce qui dans la maturité du fruit, aprés la déhiscence, se remarque, car les carpelles stériles restent liees au gynostéme, qui ne forment avec lui qu'un seul corps, tandis, que les carpelles fertiles se detachent, en facilitant la dissemination des semences.
La curvature qu' elles prennent et la force dehiscive propre, font éclater les trachées qui l'attachaient au gynostéme, ce qui les oblige à s'etaler en se recourbant. Dans quelques genres la dehiscence n'est pas en six valvules, car les carpelles stériles restent adhérentes aux fertiles, comme dans les genres Stelis, Lepanthes, etc. qui s'ouvrent en deux valvules, et dans le Polystachia qui n'en presente qu'une seule, ne parlant pas d'autres genres.
L'étude de la position des faisceaux des vaisseaux vasculaires et de leur nature, est une des choses, qui donnent raison à la théorie que je présente sur l'anomalie

Les carpolies stóriles donnent origine aux étaminos.

L'Habenaria Rodeiensis a douzo deiensis ${ }^{\text {a }}$
carpolies.
des ces fleurs. Dans des coupes transversales des ovaires, tandis qu'on voit que les uns ont un faisceau de vaisseaux opposé au placenta, dans d'autres on voit trois et quatre faisceaux, disposés de manière à nous montrer non seulement les nervures médianes des deux carpelles unies, que la troisième qui se lia aux deux autres et qui unies forment les stigmates ou rentrent dans la formation des étamines, qui sont fournues par les stériles.
Les vaisseaux de celles qui sont stériles, en général, bordent la face extérieure de l'ovaire, opposés aux placentas.

Par ce que je viens d'exposer, il ne me reste qu'à fournir encore un exemple, qui vient répandre une vive lumière sur le sujet, nous montrant clairement que dans chaque carpelle, telles elles ont été considérées jusqu'á aujourd'hui, il y en a trois: deux fertiles et une stérile. On pourra considérer cet exemple comme un dédoublement (diremptio), mais, sans raison. L'Habenaria Rodeiensis Barb. Rod., (Tab. II. fig. 7.) une nouvelle espèce décrite par moi, (1) présente les pétales bipartis et le labelle triparti. L'ovaire présente trois placentas en chaque carpelle fertile, oú sont les vaisseaux et les trachées de la base du triangle, quien général présentent, réunis dans un seul faisceau, tandis que ceux du sommet se divisent en six faisceaux, ce qui arrive aussi dans les trois carpelles stériles, en dénotant une analogie entre celles-ci et celles du dos des carpelles fertiles. Outre cette analogie et cette symétrie, on remarque dans les carpelles fertiles des signes composés de trois ares, deux opposés et un superposé, dont le parenchyme est plein de chlorophylle. Les arcs sont séparés par les faisceaux des carpelles stériles.
(1) Gonera et species ofohidearum novarum. II. pag. 256 n .12. parmi un grand nombre de fleurs, quelques-unes m'ont causé une vive satisfaction. Elles se présentaient modifiées, elles avaient deux labelles et deux éperons. Cette disposition proviendrait-elle d'un dédoublement?
Dunal (1), Moquin-Tandon (2) et St. Hilaire, (3) qui est celui qui a le mieux traité de se sujet, le definissent de cette manière: quand il existe dans un verticille d'une fleur au lieu d'un organe, plus d'un, il existel un dédoublement.
Le dédoublement est un phénomène qui fait partie non seulement des faits organographiques normaux, mais encore tératologiques, et il a lieu non seulement dans les feuilles, mais aussi dans les organes floraux, dégenérations des mêmes. Si le dédoublement s'effectue avec énergie et force en augmentant le nombre des organes, on remarque que dans cette augmentation, presque toujours un organe se divise aux dépens d'un autre qui avorte et dans ceux dédoublés il n'existe pas une parfaite ressemblance; il y a toujours une irrégularité, qui nous montre que l'un est né au dépens d'un autre. Les dédoublements ont lieu dans les verticilles, ou dans le même, ou dans l'autre, d'oú viennent les termes diremptio collateralis et diremptio paralella. Mais, que

[^7]Dédoubloment.
les sépales se dédoublent, moins communément, les voit trois valvules, l'antérieure ayant deux placentas séparés et parfaits, ce qui donne à l'ovaire quatre placentas. Les vaisseaux et les trachées au lieu de présenter les deux de la base du triangle unis intimement et ceux du sommet séparés en six faisceaux, ils se trouvent alors modifiés, présentant ceux qui sont unis, séparés, et ceux qui sont séparés, unis, en formant le triangle, cela dans les carpelles latérales.
Dans celle de face, les trois faisceaux, ne forment pas un triangle, ils sont en ligne, ceux des extrémités ont en face un cordon placentifére et ovolifêre, pendant que celui du millieu n'a rien. (Voyez flg. A. B.) Les carpelles sont modifiées aussi; llau lieu de six faisceaux paralêlles, elles ont deux faisceaux, par l'union intime des six. Serait-ce un dédoublement, qui a modifié non seulement la carpelle mais encore la position de tous les vaisseaux? On y voit que les deux faisceaux de vaisseaux, qui en général sont disposés en triangle, avec le sommet en dehors, sont des faisceaux qui représentent la nervure

Conséquonces d'un dédou. blomont. pétales ou les étamines, ce phénomène y se présente seulement; il ne va pas à lovaire. Eh bien, dans l'espéce en question, pour qu'on admette un dédoublement, il faut admettre le dédoublement de l'ovaire, car non seulement le labelle, les carpelles et les placentas se sont dédoubles, et d'une manière qui justifie l'idee que j'ai sur l'union des carpelles.
Examinons et faisons la comparaison.
Comme j'ai déjá montré, la disposition des vaisseaux et des trachées dans l'ovaire de l'Habenaria Rodeiensis Barb. Rod., dans son état normal, comparons le maintenant avec ceux qu'on remarque dans l'ovaire de la fleur à deux labelles.
Au lieu de trois valvules à un placenta chacune, on
médiane des feuilles carpellaires ; ceux de la base forment les carpelles fertiles et celui du sommet la carpelle stérile.
Dans le cas en question, les carpelles fertiles se sont séparées et la stèrile s'est placee entre elles, s'unissant par les bords, et à l'union des bords de celle-ci avec les bords de celles-lá, se sont formés les placentas, comme devait être le type primitif et que le diagramme que j'ai établi nous montre.
En passant maintenant au labelle, on voit qu'il est divisé en deux, autrement, la fleur a deux labelles libres, sans liaison aucune à la base et formés par les vaisseaux qui se prolongent des carpelles. Chacune a fait son labelle.
Pour ce qui est des formes, elles sont venues, a propos, à mon aide. La fleur regardée de face, ($\mathrm{fg} . \mathrm{C}$.) présente le labelle gauche avec les mèmes formes, le même éperon, et la même grandeur que le labelle normal (D.) présentant seulement la lacinie latèrale droite un peu atrophiée, et le labelle droit (E.) entièrement different du gauche, mais avec la conformation et la grandeur des pétales, (F, avec la seule[différence qu'elle posséde un éperon aussi. Est-ce un dédoublement, mon cher Conseiller? Il est très-naturel que si ça en est un, un des labelles perdrait l'éperon, qui comme vous le savez mieux que moi, est formé par l'union des bords des pétales dans la courbure qu'ils font en descendant pour se relever. Dans le dédoublement l'un resterait avec l'eperon au dépens de l'autre, ou tous les deux avec des éperons plus au moins imparfaits, quand, dans le cas présent tous les deux sont parfaits et égaux pour les formes et pour la grandeur.
Que le labelle est formé par deux pétales unis, comme je l'ai dit autre part, cette fleur est venue me le prouver;

Ressomblanco du labollo arec les pétales.

Confirmation quo 10 laballo ost formó do doux pótales.
tant il est vrai, qu'un des labelles, le gauche, s'est présenté complétement semblable au normal, ayant seulement une petite atrophie, que naturellement, quelques fois, on rencontre; et l'autre, le droit, semblable aux pétales, non seulement par les formes que par la grandeur, nous voulant dire positivement que le labelle est toujours le résultat de l'union de deux pétales, qui plus au moins se modifient par cette union, et par les autres organes qui y concourent aussi.

En comparant les figures copiées exactement du naturel vivant, C.D.E.F. on voit ce que j'affirme.

La séparation du labelle, je l'ai vue plus d'une fois, mais pas aussi clairement, pour me confirmer dans mon opinion sur sa structure.

J'ai observé un autre fait, dans le Cattleya Loddigessi où les pétales avaient disparues, mais par compensation, il présentait|deux labelles parfaits, en tout semblables, l'un opposé à l'autre.

Pig. VII-LL. Deux pótales et uno s'́palo qui liés ont fórmó deux labelles. SS. Deax sépales qui sy sjnt unis formant des sépales et en contribuant A la formation des quatre ctamines e.e.e.e.
PP. Pétales arortés qui cesont trasformés en stigmates pétaloides.
J'ai rencontré dans une des iles de la riviére Parahybuna, à Minas Geraes, un exemplaire du Cattleya cité
en pleine floraison, ayant deux fleurs, composees de quatre divisions; deux sépales et deux labelles, tous les quatre aussi parfaites que celles du type en etat normal. Outre cet écart, elles présentaient quatre etamines et deux stigmates pétaloides, tout disposé comme le diagramme le représente, en exceptant les deux étamines inferieures qui sont supérieures aux stigmates par la torsion qu'ils ont souffert.
Dans cet individu, quoique monstrueux, on remarque que les deux pétales qui s'unissant, ordinairement, aux sépales pour former les pétales, se sont séparés, en s'en allant un au sépale superieur, et avec sa compagne ont formé le labelle supérieur, et l'autre, en restant libre, est passé au gynosteme et forme un stigmate. Le sépale qui habituellement s'unit aux deux pétales, en se rendant libre, s'unit au sépale, qui est toujours libre, et en forma un seul corps, de lá vient que la fleur présente deux labelles opposés, l'un supérieur et l'autre inférieur et deux sépales opposés aussi, en forme d'une croix.
Les faisceaux de trachées qui contribuent à la formation du gynostème, ont eté ceux qui ont le plus souffert, dans l'individu en question. Ceux des divisions qui forment le labelle avortèrent, soit inférieurement, soit superieurement, seulement ceux quiforment les sépales libres et ceux qui s'unissent pour former des pétales ont concouru, de manière que le gynostème présente quatre étamines presque libres et dix stigmates, formés par la division qui resta libre, se montrant pétaloide, quoique liee aux étamines.
Cette disposition confirme encore la manière dont j'envisage la division des trachées et la formation des organes qui constituent le gynostème.

Pour faire la synthése de ce que je viens d'exposer, je vous présente l'Epidendrum vesicatum Lindl, l'illustrant

Explication dos coupos transyorsalos do loovairo de l'Epidendrum vesicatum.
avec des coupes transversales depuis la base de lovaire jusqu'au gynostème, faisant acompagner ces coupes de figures théoriques, basées sur les mêmes coupes, qui présentent le nombre de leurs faisceaux de vaisseaux en suivant leur disposition et leur division, qui nous confirme non seulement mon opinion sur le nombre des carpelles, des vaisseaux et leur distribuition. Voyez la Tab. I.
La figure 1 A et 2, qui sont des coupes horizontales du pédoncule| de l'ovaire, copiées du naturel vivant et augmenteés trois fois, présentent neuf faisceaux de vaisseaux divisés triangulairement, en deux verticilles. Ceux du verticille extérieur représente le calice et l'androcée(1) et ceux du verticille intérieur la corolle et le gynécée. La figure 3 est le commencement de la formation des carpelles et se présente intervertiá cause de la torsion qu'y souffre le pédoncule, La figure 4 représente la section du même ovaire, récemment fécondé, fait dans la partie centrale. Jusque lá les faisceaux marchent intimement unis ou liés et en se prolongent jusqu'á la coupe de la figure 6, qui représente la fin de l'espace occupé par les placentas et le commencement de la séparation des carpelles antérieures, oú l'on forme un canal, (que caractérise le nom spécifique de cet individu) et le commencement aussi de la division des faisceaux des vaisseaux des carpelles antérieures.
Dans la fig. ? qui est la section faite au tiers inférieur du canal, dejá les carpelles présentent chacune son faisceau de vaisseaux, qui leur sert de nervure médiane, au nombre de douze, en ayant les stériles trois. Le milieu du canal réprésenté dans la fig. 8 , présente non seu-

[^8]
lement les trois carpelles anterieures complètement distinctes, en laissant voir les bords extérieurs des deux fertiles, oú l'on se forment les placentas, unis en dedans, que la stérile en face en unissant les autres bords, tous avec leurs vaisseaux dans la place de la nervure médianne.
J'y représente le mézanthe par deux sections, (figs. 9 B . et 10 C .,) en montrant dans la premiere les vaisseaux qui vont aux sépales et dans la deuxième ceux qui vont aux pétales, dejà avec des organes tordus á droite en intervertissant le triangle des stigmates.
Si on remarque bien la fig. 9 B. on voit dans trois verticilles 18 faisceaux de vaisseaux et des trachées, ainsi distribués: les trois faisceaux inferieurs, qu'appartiennent aux trois carpelles antérieures vont former le labelle, et les autres les sépales; les trois du second verticille ce sont les étamines et les autres trois du verticille intérieur les stigmates. En 10 C., section faite immédiatement au dessus de 9 B ., on voit la même formation, seulement les trachées qui forment les sépales ne paraissent plus et l'on voit alors deux autres groupes, un de chaque côté, qui forment les petales.

Dans la fig. 11 D., qui représente une section du gynosteeme, on n'y voit que les faisceaux qu'unis forment lesorganes reproducteurs, et les trois inferieurs qui sont ceux du labelle, dejáa augmentés avec les deux qui réprésentent les deux pétales.
Jusqu'ici je vous ai montré ce qui se passait dans lovaire, en acompagnant sa longueur par des coupes transversales, maintenant je vous montrerai comment ces organes se désunissent, se lient et se subdivisent. Afin de rendre bien clair ce sujet, je me servirai des mêmes coupes, laissant de còté la conformation de leurs circonferences, me basant seulement sur leur exacte

Explication des figures thôoriques ot do la disposition des organos.
disposition des vaisseaux et je vous présenterai des figures théoriques, qui éclairciront mieux la question.
Je vous ai déjà dit que la fleur d'une orchidée avait vingt quatre organes, résultat de douze faisceaux de vaisseaux et de trachées qui se subdivisaient; maintenant je vous les montrerai, les suivant dans l'Epidendre cité, suivant toujours la nature. Il n'y a pas d'imagination, c'est l'observation qui nous guide. Observons donc. La Fig. A'. basée sur la fg. 1 A et 2 , présente en sortant de chaque poin, tun faisceau de vaisseaux intimement liés, au nombre de neuf. Ainsi ces vaisseaux traversent longitudinalement l'ovaire jusqu'au commencement du canal, ($f g .6$.) oú le faisceau de face se divise, et, sur le champ ($f g$. 7,) les trois faisceaux des six carpelles fertiles se subdivisent, en allant ainsi jusqu'au mèzanthe. En y prennant la fg .9 B , en la comparant avec la $f g .8$, on remarque qui pendant que celle-ce a douze faisceaux, celle-lá en a dix huit. Voilá la raison: les trois faisceaux qui correspondent aux trois carpelles unies se divisent en autant'de groupes de trois, representant celui du centre la carpelle stérile, par conséquent, de neuf que nous avons vu à la base, ($f g . A^{\prime}$) nous rencontrons douze au-dessus de l'ovaire. Ces douze en arrivant au mézanthe, (fig. 9 B. A." B.) les six qui correspondent aux six carpelles fertiles se subdivisent en douze aussi; six vont à l'intérieur; ceux de l'intérieur se lient par paires en se courbant l'un sur l'autre immédiat de la carpelle prochaine et se présente en formant les trois sligmates, et les six des carpelles steriles se divisent aussi; ceux des deux carpelles solitaires laterales se divisent en deux faisceaux, l'un monte aux sépales et l'autre forme l'etamine et s'unisse à l'une des carpelles stériles liees aux fertiles; celui de la carpelle sterile du dos se divise en quatre faisceaux, trois montent à la sépale supérieure et l'une
forme l'étamine, s'unissant aussi à celui qui fournit la carpelle stérile droite unie aux fertiles et ceux des trois carpelles steriles liees aux fertiles se divisent en quatre faisceaux aussi, trois montant aux sépales latéraux et l'un à l'intérieur à former étamine, en exceptant seulement les faisceaux de la carpelle anterieure qui au lieu de monter aux sépales, se dirigent trois au labelle et un à former étamine. Nous y avons donc dix huit organes, qui se présentent au lieu de douze.

En comparant $A^{\prime \prime}$ avec B on voit en $A^{\prime \prime}$.lla division des organes et en B comme ils paraissent dejaj divisés, dans la section du mézanthe. En $10 C^{\prime}$ nous voyons cepandant quinze, au lieu de dix huit organes, parce que les uns ont disparus et d'autres se sont présentés: les neuf qui montaient aux sépales en etant encorporés, ils ne figurent pas, car la section est faite immédiatement au dessus de son écart, mais il se présente six, qui sont ceux qui correspondent aux carpelles fertiles et qui entrent dans la composition des pétales et du labelle. En 11 . et D. on n'y voit, alors, que les organes separés qui s'unissent intimement, à former le gynostème et les cinq autres qui appartient au labelle, fournissant, comme nous l'avons vu, les trois intérieurs la carpelle stérile antérieure et les latéraux les fertiles anterieures.
En comparant encore la fig. $A^{\prime \prime}$ avec B. on reconnait que les stigmates que jusqu'á $A^{\prime \prime}$ en formaient un triangle avec la base au dos, en B il presente le même triangle avec la base en face, c'est-à-dire interverti, ce qui a lieu comme je l'ai dit, par la torsion qu'il a souffert à droite. Ainsi $S^{\prime} 1$ de la $f i g$. $A^{\prime \prime}$. passe à occuper la place de $S^{\prime} 2$. et celui-ci la place de $S^{\prime} 3$., n'etant fertile, donc, que S^{\prime} 2., n'en parlant du genre Cypripedium. Voilà, donc, avec cet exemple, je crois mon opinion confirmée; néanmoins, je me soumets á vos justes et savantes observations.

Je dois vous faire voir aussi, que, dans la plus grande partie le faisceau de trachées qui acompagnent les stigmates inferieurs, en arrivant au mézanthe se divise, se courbe, confondu avec le labelle, mais quelques fois il le surpasse, s'unit aux autres du gynostème jusqu'à une certaine hauteur et ensuite se detache; d'autres fois il suit lié jusqu'au stigmate, où, alors, non seulement il se prolonge au dessus des autres, mais se recourbe confondu avec le labelle. Pour ne vous présenter un grand nombre d'exemples, nous avons dans le premier cas, parmi les Vandées, le genre Aspasia, et dans le second, parmi les épidendrées, le genre Epidendrum.

Les étamines qui forment les côtés du gynostème, ne sont pas toujours si lieés qu'elles le paraissent, elles se détachent, se prolongent à former des ailes, des antennes, des caroncules, comme dans les Habenarias. Dans le genre Didactyle, nous en voyons quatre bien clairement. Les posterieures et celles opposées au sépale supérieur, presque toujours se prolongent et toutes ensemble ils forment les bords du clinandre qui protégent l'anthère.

Celui-ci, quelque fois, est formé par les lateraux.
Voilá, mon ami, en resumé le résultat de quelques observations organogéniques auxquelles j'ai procédé sur la famille des Orchidées, qui peuvent étre modifiées, mais, plût à Dieu, qu'elles soient acceptées par vous, ou par ceux qui législent dans la science de Linné. Il faut que vous croyez, que, sans y prendre garde, j'ai trouvé ce résultat, malheureusement un peu contraire à ceux des autres qui ont traité de ce sujet.

Je termine celle-ci, vous présentant encore les cinq diagrammes établis par Blume (1) á la fin de la préface sur les Orchideés.

[^9]On y voit que par le genre Cypripedium les troís étamines commencent à se démasquer, montrant le costumé fertil avorté et les deux autres qui sont steriles fertiles. plus clairement ils se présentent dans le genre Apostasia, séparé par Lindley des orchidées, dont le gynostème se divise en quatre parties, en étant une le stigmate. (Fig. C) Dans le genre Neuwiedia les trois étamines sont bien saillants au sommet du gynostéme, qui est divisé en quatre parties, dont l'une est le stigmate. (Fig. D)

Ces trois genres semblemt retourner au type primitif, ou sert à nous montrer comment s'opéra la révolution qui a eu lieu dans les organes et comme ils se sont liés.

Les figs. A. B. sont les diagrammes de la fleur actuelle sans les étamines qu'on n'y voit, et la mème présentant la position occupée par les étamines latéraux. La fig. E., d'un diagramme fictice, nous donne l'opinion de feu le savant botaniste hollandais, directeur du jardin de Buitenzorg, à Java.

En illustrant celle-ci, et pour en faciliter la compréhention, j'ajoute des planches, avec 37 genres et plus de 100 espéces, tout de grandeur naturelle, à différents degrés de développement, avec des coupes horizontales augmentées, qui marquentle nombre de faisceaux de trachées en chaque carpelle.

Agréez mon cher Ami, l'assurance de ma considération la plus distinguée.
J. Barbosa Rodrigues.

Rodeio, le 22 Juin 1881.

TAB. II

Fig. 1.- Sarcoglottis ornithocephala Barb. Rod. p. p. les placentas; p^{\prime}. p^{\prime}. un placenta formé ì l'union des deux carpelles stériles; r. le rostelle ; s. s. les stigmates. Cette figure représente le gynostème et une partie de l'ovąire, ouvert en ayant, deux fois grossie.
Fig. 2.- Coupe transversale du Sarcoglottis ci-dessus, augmenté deux fois. a. la carpelle stérile; b. les carpelles fertiles; c. c. la troisieme carpelle firtile, qui nous montre que elle est formè de deux autres; d. labelle ; e. e. les dents du labelle; f. un placenta formé à l'union des deux carpelles et quoi en remplace la fertile qui est avortée.
Fig. 3. - Epidendrum odoratissimum Lindl. Fruit de grandeur naturelle.
Fig. 4. - Section transversale du même Epidendre, grandeur naturelle. a. les carp lles fertiles; b. les carpelles steriles superposées aux deux fertiles à qui s'en unit. b^{\prime}. les carpelles stériles et libres.
Fig. 5. - Habenaria Johannensis Barb. Rod. Le gynostème et une partie de l'ovaire ouvert en avant et une coupe transversale de lovaire, tout deux fois augmentós. a. b. c. les carpelles fertiles et les placentas ; $a^{\prime}, b^{\prime \prime}, c^{\prime}$. les carpelles stériles ; a. les stigmates ; e. le rostelle alliforme.
Fig. 6. - Dichaea coriacea Barb. Rod. Un fruit et une section du même, le premier de grandeur naturelle et le second deux fois augmenté. Il nous montre les carpelles intimement unies, n'en restant libre que la fertille d'en face, où le fruit s'ouvre en deux valvules.
Fig. 7.- Les détails de l'Habenaria Rodeiensis Barb Rod. A. la coupe d'un fruit normal ; B. la coupe d'un fruit anormal, tous les deux augmentés six fois, le premier avec trois plicentas et le e cond avec quatre ; C. le labelle gauche; E. le labelle droit; F. an pétale interverti, pour qu'on le compare mieux ; D. un labelle normal; tout deux fois augmentés.
Dans la coupe d'un fruit dévelonpé, quatre fois grossie fig. A. la simple inspection nous montre clairement les trois carpelles, qu'unies, ont été considérées comme une seule. Outre la symétrie de la division des vaisseaux, il y a le coloris qui l'en sépsrent. Dans la fig. ci-contre, observée avec le microscope Nachet, oculaire 1, objectif 2 , ont voit le parenchyme divisé en cellules alongées, disposées en trois groupes, qui se touchent, ayant les deux latêraux son réseau de cellules pleines de chlorophylle et celui du milieu les cellules sans coloration. Trois corps y sont accolés, ne sont-ils pas trois carpelles? Les vaisseaux de la base du triangle vulgaire, y sont réunis dans un seul fuisceau, tandis qui ceux du sommet sont divisés en six, et dispcsés en marquant la ligne de division. Les carpelles stériles ont leurs vaisseaux divisés aussi, en six parties, ce qui ótablit de la symétrie avec los autres, et de l'analogie.

TAB. III

Malaxideae Lindl.

Fig. 1. - Pleurothallis Janeirensis Barb. Rod. Le fruit, dévéloppé grandeur naturelle, et une coupe transversale, deux fois augmentée on montrant les carpelles, et les faisceaux de vaisseáux et des trachées qu'elles on ont; chaque stérile en a un et les fortilles trois unis.

Fig. 2.- P. Johannensis Barb. Rod. Ibidem.
Fig. 3.-P. serrulatipetala. Barb. Rod. Ibidem.
Fig. 4.- P. ecallosa Barb Rod. Ibidem.
Fig. 5.- P.oligantha Barb. Rod: Elle montre l'union des deux carpelles fertiles, qu'A la maturité du fruit se conservent unies on se séparant de la troisième et s'ouvrant on deux valvales.
Fig. 6. - P. tricarinata H. B. K. Voyez l'observation faite à la fig. 1.

Fig. 7.-P. pectinata Lindl. Voyez l'observation de la fig. 5.
Fig. 8.- P. echinantha Barb. Rod. Voyez l'observation de la fig. 1.

Fig. 9.- P , macropoda Barb. Rod. Ibidem.
Fig. 10.- P. crocea Barb. Rod. Ibidem.

$$
\begin{aligned}
& \text { (1) D } \\
& \text { 0) } 0 \\
& \text { Ba boro } \\
& \text { Do }
\end{aligned}
$$

(1)

TAB. IV.

Malaxideae Lindl.

Fig. 1. - Lepanthes modesta Barb. Rod. Un fruit et la coupe du même. Les points noirs nous montrent le nombre do faisceaux des vaisseaux en chaque carpelle. Il s'ouvre on deux valvules.
Fig. 2.- L. Wavoraeana Barb. Rod. Ibidem.
Fig. 3.- L. punctatifolia Barb. Rod. Ibidem.
Fig. 4.- L. lobisserrata Barb. Rod. Ibidem.
Fig. 5.- L. oristata Barb, Rod. Ibidem.
Fig. 6.-L. Gunningiana Barb. Rod. Ibidem.
Fig. 7. - Anathallis racemosa Barb. Rod. Ibidem.
Fig. 8.- Anathallis Ibidem.
Fig. 9.- A. Parahybunensis Barb. Rod. Ibidem.
Fig. 10.- Octomeria albina Barb. Rod. Ibidem.
Fig. 11. - Lyparis elata Lindl. 11 nous montre les carpelles stériles connées aux fértiles avec le dos lisse comme celles qui sont libres.

Fig. 12. - Didactyle micropetala Barb. Rod. Un fruit présentant cinq carpolles unies, en s'ouvrant en deux valvales.
Fig. 13.- Didactyle. Ibidem.
Fig. 14. - D. antennifera Lindl. Ibidem.

TAB. V.

Epidendreat Lindl.

Fig. 1.-Epidendrum squamatum Barb. Rod. Un fruit et sa coupe transversale, gr. nat.; coupo transversale da gynostème, deux fois grossie. Les points noirs montrent les faisceaux de vaisseaux et leur subdivision.

Fig. 2.-E. pygmeum Lindl. Un fruit et sa coupe transversale, gr. nat. Dans les carpelles les faisceaux sont on ligne et non disposés on triangle.
Fig. 3.-E. variegatum Hook. Les faisceaux sont liès intimement. Fig. 4. - E. coriaceum Hook. Ibidem.
Fig. 5. - E. fragrans, var. Les faisceaux sont disposès en triangle.
Fig. 6.-E. Avioula Lindl. Voyez obs. fig. 3.
Fig. 7.-E. Betimianum Barb. Rod. Voyez obs. 5.
Toutes ces espècos s'ótalent on six valvules.

TAB, VI.

Epidendreaz Lindl.

Fig. 1.- Epidendrum ramosum Lindl. Un frait bien développe et sa coupe transversale, gr. nat. Les vaisseaux sont liés intimement.

Fig. 2. - E. latilabre Lindl. Un fruit peu développé, gr. nat. et sa coupe horizontale, deux fois grossie. Les vaisseaux sont disposes en triangle, mais ceux du sommet sont subdivisés. a. coupe du gynosteme montrant le nombre de vaisseaux que contribuent à sa formation.
Fig. 3. - E carpophorum Barb. Rod. Un fruit un peu développé et sa coupe transversale, gr. nat. Dans cette coupe les faisceaux dans les carpolles fertiles sont distribués en triangle et la stérile qui couvre la suture de la fertile d'en avant, ne les touche que par les bords, en laissant entre leurs dos et sa face une ouverture cuniculaire. Les trois faisceaux de vaisseaux qui, en général, denotent les trois nervures médiannes des carpelles, y sont subdivisés, deux restent dans les deux carpelles fertiles ot un passe à la carpelle stérile divisé en cinq, nous montrant bien les trois feuilles carpellaires.
Fig. 4.-E. ochrochlorum Barb. Rod. Un fruit développé, gr. nat., fet sa coupe transversale, augmentée deux fois. On voit dans celui-ci les〕trois faisceaux disposés en triangle, dans les carpelles fertiles, tandis que dans la carpelle stérile on n'en voit qu'un.
En examinant l'ovaire avant la fécondation, on voit que la carpelle antérieure a les bords incurvés à se toucher au centre de l'ovaire, en laissant de la sorte un canal fermé. Après la fécondation la partie intérieure, c'est-à-dire, où les bords sont unis, se retire, s'appuye aux parois intérieus du dos et ens'unit, se présentant comme on voit dansla, coupo transversale du fruit. En acompagnant le fruit, on voit néanmoins qu'á son sommet elles so délient une autre fois et forment alors le canal qu'on voit en a.

Fig. 5.- E. cauliflorum Lindl. Un fruit, gr. nat. et sa coupe transversale, deux fois augmentée, montrant trois faisceaux de vaisseaux dans les carpelles fertiles et un dans les stériles.

TAB. VII

Epidendrear Lindl.

Fig. 1.-Cattleya Mossiae Hook. Coupe d'un fruit pea développó, gr. nat. Les carpelles stériles avortent, on n'a figaré gue leurs faigceaux de vaisseaux divisés on deux groupes. Dans les fertiles, du groupe de trois, et qui forment le triangle, celui du sommet se subdivise les subdivisions allant occuper les bords des carpelles.

Fig. 2.-C. Schilleriana Rchb. fil. Le fruit et la coupe transversale, gr. nat. Dans celui-ci les groupes de vaisseaux et des trachées des carpelles fertiles sont divisés, les deux latéraux de la base du triangle, vont aux cotés et celui du sommet' vient en avant. Les faisceaux des carpelles stériles se subdivisent aussi en trois, disposés on triangle.
Fig. 3.- C. Loddigesii Lind1. Le fruit et sa coupe, gr. nat. Les subdivisions des trois faisceaux, sont ici différentes encore. Les trois faisceaus des carpelles fertiles, qui sont disposés en triangle, se subdivisent, les latóraux se divisent on quatre disposés en ligne et celui du sommet se divise triangulairement on trois. Ce groupe qui correspond a la carpelle stérile, solidifiée aux fertiles, avec cette subdivision de vaisseaux se montre tout semblable aux trois faisceaux des carpelles stériles libres, qui se subdivisent aussi en trois.
Fig. 4.- C. fragrans Barb. Rod. Une section d'un fruit pen développé. II a les trois faisceaux des carpelles fertiles très-divisés ; les deux de la base du triangle subdivisés en six et celui du sommet on trois. Les carpelles stériles ont. leurs faisceaux divisés on cinq.

TAB. VIII

Epidendreae Lindl.

Fig. 1.- Laelia Perrinii Lindl. Le fruit peu développé et une section transversale, gr. nat. Par la section du fruit on voit que les trois faisceaux de trachées des carpelles fertiles se sont subdivisés, ne laissant, organogéniquement, d'être disposés en triangle, comme dans la fig. 3. de la tab. V.; néanmoins, ici les faisceaux latéraux se sont subdivisés en quatre parties, disposés on ligne droite se dirigeant vers les cótés et le faisceau du sommet du triangle divisó, aussi, en quatre parties, trois se sont disposés en ligne et une a passée en avant pour se placer entre les deux faisceaux latéraux. Les carpolles stériles montrent leurs faisceaux également divisés en quatre parties disposées comme celles de la carpelle sterile qui couvre les fertiles. Ceci nous confirme qu'au dos de celles-ci, il y en a une autre de même nature des stériles.
Fig. 2. - L. rupestris Lindl. Fruit développé et la coupe transversale, gr. nat. Les carpelles fertiles présentent trois faisceaux de trachées disposées en triangle, celui du sommet étant divisé en trois parties. Dans les carpelles stériles nous voyons leurs faisceaux divisés en deux. Dans cet exemple il n'y a que les carpelles stériles dont les faisceaux se divisent.

Fig. 3. - Leptotes bicolor Lindl. Frait peu développé et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de trachées disposés en triangle, et un dans les stériles.

Fig. 4. - Sophronitis cernua Lindl. Fruit développó et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de traciées disposés en triangle, mais celui du sommet, qui correspond aux carpelles stériles sont divisés on trois. Les carpelles stériles n'ont qu'un seul faisceau chaqu'une.

Fig. 5. - Laelia chantina LindI. Section d'un fruit peu développé gr. nat. Elle a les vaisseaux de la base du triangle des carpelles fertiles divisés en trois parties et coux du faisceaux du sommet réunis en un seul faisceau, mais laxement. Ler carpelles stériles ont les vaisseaux divisés aussi en triangle, mais à sommet interverti.

TAB. IX

ERIDENDREAE ET VANDEAE LINDL.

Fig. 1.-Schomburgkia crispa Lindl. Un fruit très-jeune et une section transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de vaisseaux en triangle et les stériles n^{\prime} ont qu^{\prime} un seul.
Fig. 2.-Tetragamestus modestus Rechb. fil. Le fruit dèveloppé avec une section, deux fois augmentée. Toutes les carpelles ont un seul faisceaux do trachées.
Fig. 3.-Isochilus lineares R. Br. Ibidem
Fig. 4.-Cattleya Schilleriana. Lindl. L'ovaire, non fécondé, augmentó deux fois, pour qu'ou puisse le comparer avec les fruits.
Fig. 5-6 AEranthus sp. Je conserve et j'ai dejá dessiné deux espèces tres-semblables par ls facies, mais dont les fruits s'éloignent par la grosseur. Je ne les ai pas encore déterminées, mais je présente ici les dessins des fruits, gr. nat. avec leurs sections, l'une augmentée deux fois et l'autre quatre. Les carpelles fertiles latérales sont intimement liées n'en formant qu'un seul corps, qui a la maturité s'ouvrent en deux valvales.
Fig. 7.- Maxillaria coriacea Barb. Rod. Des sections d'an fruit et du gynostème, le premier développé et de gr. nat. et le second augmenté deux fois. Les carpelles fertiles latérales sont liées en un seul corps, et les triangles des vaisseaux, qui sont subdivisés, ont les sommets intervertis. Les faisceaux latéraux se divisent en deux, et de celui du sommet se détache une trachée qui so place au centre formé par les divisions des latéraux. Les faisceaux des carpelles stériles se divisent aussi en six parties ot le fruit a'ouvre on deux valvules.
Fig. 8.- M. uncata Lindl. Un fruit, gr. nat. et une section horizontale, augmentée deux fois. Les vaisseaux des carpelles fertiles sont unis dans un seul faisceau circulaire, mais pas intimement, et ceux des carpelles stériles sont unis dans un seul faisceau, aussi, mais très-intimement.

Fig. 9.-M. longipetala Barb. Rod. Sections transversales d'un fruit et du gynostème, augmentées deux fois. Les carpelles fertiles ont les faisceaux des trachées disposés on triangle, mais, les deux latéraux, qui correspondent aux carpelles vraiement fertiles, divisés en deux parties et celui du sommet, qui appartient à la carpelle stérile qui les unit en entier. Les carpelles stériles ont leurs faisceaux divisés en six parties dontl'une n'a que deux trachées.

Fig. 10.-M. squalens Hook. Fruit développé, gr. nat. et des soctions du même et du gynostème, deux fois augmentées. II a les vaisseaux réunis dans un seul faisceaux dans chaque carpelle.

Fig. 11.-M. phoenicanthera Barb. Rod. Un fruit avec une section, gr. nat. Les carpelles fertiles ont trois faisceaux disposés en triangle et les stériles n'ont qu'un seul.

TAB. X

VANDEAE LINDL.

Fig. 1.- Maxillaria leucaimata Barb. Rod. Un frait, gT. nat. et des sections transversales du même et du gynostème, deux fois augmentées. Dans ce fruit on voit clairement les vaisseaux, qui des carpelles fertiles s'en vont aux pótales et au gynostème, ainsi que ceux des stériles qui vont aux sépales et au gynostéme également. Les carpelles fertiles ont les deux faisceaux latéraus très-unis dans un seal et ceux du sommet du triangle (des carpelles stériles) divisés en trois parties; celles-ci vont aux pétales. Dans les stériles, libres, les faisce7ux se divisent on deux, l'un se subdivise en cinq et vont aux sépales et l'autre en trois qui vont aux étamines.
Fig. 2.-M. rufescens Lindl. Un fruit très deivoloppé et des sections du même et du gynostème, tout gr. nat. Tous les vaisseaux sont réunis dans un seul faisceau, dans chaque carpelle.
Fig. 3.- Trigonidium macranthum Barb. Rod. Le fruit, gr. nat. avec une section du même ot une autre du gynostème, deux fois augmentées. Il présonte dans les carpelles fertiles deux faisceaux do yaisseaux pas très-unis et celui qui ordinairement forme le sommet du triangle, subdivisó en sept parties, cellos-ci concourent à la formation des pétales et dans les carpelles stériles le faisceau est divisé en doux parties, l'une (l'extérieure) subdivisée en sept aussi et qui yont aux sépales.
Fig. 4.- Dicrypta Bauerii Lindl. Un fruit et une section horizontale, du mème gr . nat. et une section du gynostème deux fois augmentée.

Les carpelles fertiles ont leur triangle de vaisseaux divisés. Les faisceaux latéraux se divisent et contribuent chacun avec des vaisseaux qui s'unissent mutuellemeut eutre eux, en formant un troisième faisceau, et ceux du sommet du triangle se divisent en trois et suivent les pátales. Les faisceaux des carpelles stériles se divisent en six parties, triangulairement, avec les sommets opposés ; celles du triangle extérieur vont aux sépales.
Fig. 5. - Dicrypta irisphyta Barb. Rod. Un fruit, gr. nat. et des sections du même et du gynostème, deux fois augmentées. Cette espèce présente, dans cos carpelles fertiles, le triangle des faisceaux de trachées modifié, les faisceaux latéraux s'unissent intimement et ceux du sommet se divisent en cinq parties. Dans les carpelles stériles, les faisceaux se divisent en cinq parties aussi, on concourant aux sépales, comme ceux des carpelles fertiles concourent aux
pétales.

TAB. XI

Vandeae LindL.

Fig. 1. - Oncidium trichodes Lindl. Un fruit trèsdéveloppé et \&я section, gr. nat. Dans chaque carpelle tous les faisceaux de vaisseaux sont reunis dans un ssul.
Fig. 2.-O. pumilum Lindl. Ibidem.
Fig. 3.- O. sarcodes. Lindl. Fruit développé et une coupe transversale, gr. nat. Les faisceaux des vaisseaux des carpelles fertiles s'unissent làchement dans un seul faisceaux et ceux des carpelles stériles se divisent en trois, triangulairement.

Fig 1. O. raniferum Lindl. Fruit. gr. nat. et une coupe horizontale, deux fois grossie. Prósente la conformation de celui de la fig. 2.

Fig. 5.- O. flexuosum. Lindl. Ibidem.
Fig. 6.-O. divaricatum. Lindl. Ibidem.
Fig. 7. - O. crispum Lodd. Fruit et section deux fois grossis. Les carpelles fertiles ont les faisceaux de trachées en triangle et les stériles divisés en deux groupes.

TAB. XII
Vandeaz Lindl.
Fig. 1.- Oncidium pubes Lindl. Une frait, gr. nat. avec la section deux fois grossie. Les carpelles fertiles ont leurs faisceaux réunis intimement, mais avec la conformation triangulaira, et les carpelles stériles leurs faisceaux divisés en deux groupes, sans se séparer l'un de l'autre.

Fig. 2.- Miltonia Russelliana Lindl. Des sections de lovaire et du gynostème, celle-ci grossie deux fois. Les carpelles fertiles ont les faisceaux dispos jes en triangle et les stériles, divisés en deux groupes.

Fig. 3. - M. Cloroessi Rchb. fil. Un fruit, gr. nat. des sections de l'ovaire et du gynostème, deux foís augmentées. Il a la même conformation de l'espèce ci-dessur.
Fig. 1.- M. Alavescens Lindl., M. spectabilis. Lindl. et M. Regnellii. Rchb. fil, présentent la même disposition des vaisseaux de l'espèce ci-dessus.
Fig. 5. - Aspasia lunata Lindl. Un fruit et des sections du mème et du gynostème, deux fois grossis. Il a les faisceaux des vaisseaux dans les carpelles fertiles divisés en trois et disposés on triangle, mais ceux des carpelles stériles réunis dans un seul faisceau.
Fig. 6. - Bifrenaria fragrans Barb. Rod. La section de I'ovaire deux fois grossie.
Les vaissesux des carpelles fertiles forment un trianglo a sommet interverti; c'est-a-dire les faisceaux de la carpelle stérile rentrent, le triangle se diviso: les faisceaux latéraux se divisent on quatre parties, et ceux du sommat se divisent en trois, formant une ligne qui sópare les carpalles fértiles. Los faisceaux des carpalles stóriles libres se divisent en deux groupez, mais colui de la portion extérieure se subdivise en quatre.

Fig. 7. - Zygopetahum Mackayi. Hook. Coupe d'un fruit, gr. nat. et des sections du mème et du gynostèm3, deux fois grossies. Dans toutes les carpelles les vaisseaux sont réanis ou un seul faisceau.

Fig. 8.-Cirrhaea tristis Lindl. Section d'un fruit, pou développé. Ses vaisseaux offrent les même disposition, que l'espère ci-dessus, soulement les yaisseaux dans les carpelles fertiles s ant disposés on ligne.

TAB. XIII

VANDEAE ET OPHRYDEAE

Fi5. 1. - Zygopetalum brachypetahum Lindl. a leurs vaissesux disposies comme dans le Z. Mackayn (Tab. XII fig. 7.)

Fig. 2. - Cyrtopera polyantha Bärb. Rod. Un fruit développé et la section transyersale, gr. nat. En conservant les faisceaux des carpelles fertiles la disposition triangulaire, néanmoins le faisceau du sommet du triangle, celui de la carpelle stérile, so diviso on deux on se subidivisant encore le groupe le plus extérieur, ce qui a lieu aussi dans les stériles libres.

Fig. 3.-Warscewoicsella digitata. Barb. Rod. Un fruit, une section da même et une autre du gynostème; tout gr. nat. Les vaisseaux. sont unis faiblement en trois faisceaux, disposés en triangle, mais dans les carpelles stériles ils forment un seul faisceau.

Fig. 1.-W. cochleata Rchb. fil. Un fruit et une section, gr. nat. Le triangle des faisceaux dans les carpelles fertiles a le sommet divisó en trois parties, triangulairement aussi. Dans les carpelles stériles, les vaisseaux sont divisés on deux groupes, se divisant au plus extérieur en trois triangulairement, présentent cette symétrie de l'analogie entre elles et les carpelles du dos des fertiles.
Fig. 5. - Lockartia lunifera Rchb. fil. Un fruit développó et la section deux fois grossie. Toutes les carpelles présentent leurs vaisseux réunis en un senl faisceau.
Fig. 6. Masdevalia aristata Barb. Rod. Il a la même disposition des vaisseaux que l'espèce ci-dessus.
Fig. 7.- Habenaria Josophensis Barb. Rod. Toutes les carpelles ont leurs vaisseaux réunis en un seul faisceau.

$\frac{1}{2}+$
 $\frac{32}{2}$

\square
25%

STRuCTURE DES ORCHIDEEES

NOTES DUNE ÉTUDE

Cheralier do l'Ordro de S. Thiago da Espads, du mérito solentififus et iltéraire; Membre do IInstitut historique du Brésil ; do I'Académio Royale
dos solunces de Lisbonnó; de la sociétó botanique Impériale et Rogalo de Vienne; dos soclétés botaniquo d'Edimbourg, des naturalistes do Fribourg, dhortloulture do Marselile, oto. oto.

Publié sous les auspices du Ministère des Travaux Publics

RIO DE JANEIRO
TYPOGRAPHIE NATIONALE
1883
$38-83$

AVERTISSEMENT

Je publie ici les notes que j’avais réunies dans une lettre adressée à mon ami le savant botaniste brésilien Mr. le Conseiller Baron de Capanema.
Dans ces notes se trouvent enregistrées les observations que j’ai faites à différentes époques, et qui justifient mon opinion sur la structure des fleurs des orchidées, copiées à mesure qu'elles me tombaient sous les mains.

Le Gouvernement Impérial ayant ordonné la publication des diagnoses de mes orchidées nouvelles, guidé par les conseils de quelques amis, et profitant de l'occasion, j'ai publié cettelettre qui n'a pour but que d'aider ma memoire. N'ayant pas du temps ni de coordonner ou même refondre mes idées on y remarquera le manque d'unité, mais je crois que le lecteur bienveillant voudra bien m'excuser.
Je donne ici un témoignage public de gratitude à Mr. le Conseiller José Antonio Saraiva, Président du Conseil des Ministres, ainsi qu'à Mr. le Conseiller José Julio d'Albuquerque Barros, son Officier de Cabinet, qui ont pris tant d'intérêt aux humbles travaux de

P'Auteur

STRLCTURE DES ORCHIDÉES

Mon cher Conseiller.

Je viens occuper votre attention pendant quelque temps, pour vous obliger à faire des observations qui puissent conffrmer ou détruire celles que j'ai faites sur les fleurs des Orchidées. Je vais les lconsigner ici, telles qu'elles se trouvent dans mon cahier de notes, et je vous supplie qu'avec votre autorité de maître et d'observateur et avec la franchise qui vous caractérise vous me disiez si elles sont fondées ou non. Vous le savez, jamais je n'ai suivi l'ancien magister dixit; j'ai toujours cherché, quand je fais quelque etude, à observer d'abord pour comparer ensuite mes observations avec celles des autres. Ce que je vois, ce que j'observe, quoique allant contre les opinions des maitres, je le soutiens jusqu'au moment oú l'on me prouve 'mon erreur, parce que comme le dit Link: cautus sum in sententia mea proferenda.

Ce que vous allez lire (ecrit currente calamo) est le résultat d'une étude organogénique que j'ai faite à différentes epoques, sur plusieurs orchidees, pour mieux les connaitre.
Je commencerai par vous citer ce que le savant Darwin a écrit à ce sujet :
a The theorical structure of few flowers has been so largely discussed as that of Orchids; not is this surprising seeing how unlike they are to common flowers. No group of organic beings can be well understood until their homologies are made out; that is, until the general pattern, or, as its often called the ideal type, of the several members of the groups intelligible.,
En exposant ici la structure des fleurs des Orchidees, déjà si etudiee par de savants botanistes, mon entreprise pourra paraître audacieuse; je semblerai plus téméraire encore en presentant des résultats differents de ceux qui ont eté obtenus pour ceux qui se sont occupés de ce sujet; mais, en ne donnant ici que les données fournies par l'observation directe et qui d'ailleurs sont des plus exactes, on me pardonnera, je l'espère, ma témérite.

Une lettre ne comportant pas de grandes reflexions, je serai bref.

Depuis très long-temps, la famille des Orchidees est connue, toutefois pas autant qu'aprés la découverte de l'Amérique, mais autant que les espéces Européennes, Asiatiques et Africaines, dans le siècle passé, le permettaient, et elle toujours a fourni des sujets à plusieurs études, plus au moins philosophiques.
La fleur d'une Orchideé, qu'elle appartienne à n'importe quelle tribu, exotique ou indigène, elle se présente toujours dans la nature, soit au botaniste, soit à l'amateur,

Co qu'on observo dans une fleur des orchideés. Sa division.
sous un aspect très-simple, à l'apparence, mais qui est le résultat d'une modification congénitale.
Elle se compose de six divisions, dont la réunion forme le périanthe ou périgone des modernes, qui est distinctement composé d'un calice et d'une corolle de trois divisions alternes, en genéral coloriées, conservant plus au moins d'uniformite. Par la forme et par la structure, ainsi que par la couleur, il se détache un pétale, tepale de quel-ques-uns, qui modifié prend une autre dimension, des formes bizarres, entierement distincte de la simplicité de ses deux autres compagnes; ce pétale a le nom de labelle.
Cet involucre protége les organes de la reproduction, qui intimement unis forment, au centre, et en continuation à l'ovaire, un organe spécial, plus ou moins long et plein d'apparat.
Par sa forme, il est connu sous le nom de colonne ou gynostéme (1) qui lui est donné, car il sert d'union entre les mâles et les femelles. Voilá ce qu'on voit dans une fleur, ce qui détermina limmortel Linné à la classer dans la monandrie, et plus tard Jussieu, dans la monoépigynie.
Elle a êté ainsi consideree jusqưả Robert Brown, qui chercha à examiner sa véritable structure et à déterminer le nombre de ses étamines et pistils, ainsi que leur position en relation au périanthe, c'est- $\dot{\alpha}-$ dire, il a fait une étude théorique qui justifait la forme qu'en réalité présente la fleur, modifíe de ce qu'elle devait être.
Son étude a eté la clef qui a ouvert le chemin pour les autres et son résultat a eté peu modifié ensuite. Ses observations, qui ont eté publiées dans les Transactions of the
(1) Kuvì-pistil, σ वrf|uwv, ótamino.

Linnean Society, (1) se résument ainsi: la fleur se com-

Opinion do
Darwin. Darwin.

Opinion du Dr.
Lindloy.
pose de trois pétales, de six étamines, disposés en deux ordres de verticilles, dont celuidu verticille extérieur est fertile, et de trois carpelles, dont l'une par modification forme le rostelle. Ces quinze organes sont disposés en cinq verticilles alternes, trois à trois.
Le Professeur Brown, croit que trois de ces étamines se combinent avec le labelle. L'orchidologiste anglais, John Lindley, au commencement, adopta l'opinion de Brown, mais plus tard, relativement au stigmate et sa position il la modiffa, c'est-d́-dire, il était dans le vrai et il passa au faux, comme nous le verrons plus tard. Voilá ce qu'il dit: «While, in sommon with Dr. Brown Iregarded the stigmate as really consisting of confluence I also supposed the position of the stigmata to be opposite the petals... The opinion I now retracte in consequence of the position of the stigmata in Cypripedium, which C. spectabilis hence most clearly to be opposite sepals.»
Le professeur Lindley en donne ainsi les caractères: «stigmata saepius in discum mucosum cavum nunc prominentem con fluentia; dorsale in marginem superiorem glandulis 1-2 in Vandeis Neotteisque separabilibus instructum, saepe in rostellum elongatum.. .. ; lateralia in plurimis obsoleta nunc basi labelli appendicis s. lamellarum callorumve formã adnata.»
Il y a déjà une vingtaine d'années que Charles Darwin êtudiant homologiquement les fleurs des orchidées après des études anatomiques, faites sur des espéces, la plupart Europeennes, établit une autre theorie et présenta une autre structure, qu'on comprendra mieux par le

[^10]diagramme ci-joint, avec les explications qu'il en donne.

J'observe, pour completer les vues de Darwin, que les petits cercles inclus dans les ares, qu'indiquent les sépales et les pétales, sont des faisceaux des trachées. Je n'expose pas ici largement l'opinion de Ch. Darwin parce qu'elle est dans le livre que vous connaissez trés-bien,

Pig. I-SS. Sifgmates. Sr, Stgre ate modifio pour former to rostellum. A 1. Anthere fertile du vertioille extérieur. A \&. A 3. Anthères du uetne rerifilo combintes arce le petalo fnffrieur pour former le labellum, a 1. a. 9. Anthì res rudimentaires du verticillo Intírieur formant généralement lo clinandre, fertiles dans to Cypripediam, a 3. Troisì̀me anthère du même rortioillo gul, quand il existo, forme lo derant do la colonn-.
intitule: On the oarious contrivances by which british and foreing orchids are fertilized by insects, (1) et y vous la verrez.
Voilà les opinions, excepté celle de Blume, sur la structure des orchidees, mais, qu'en me guidant d'après
(1) Un volume in-60, London, 1826.
l'harmonie générale de la nature et pénétré do la vérité de la maxime Linnéenne que la natura non facit saltus, je ne pouvais pas admettre. L'étude que je faisais sur des fleurs, sur de jeunes boutons, sur des fleurs fécon-

Mes doutos.

Difficulté do l'ótudo. dées, ainsi que sur des fruits, me rendait perplexe. Quelques fleurs me semblaient vouloir confirmer les résultats connus, mais d'autres en présentaient de différents, ce qui m'obligeait à rejeter ce qui était déjà établi, quoique affirmé par des opinions autorisées. Á la fin, aprés plusieurs études anatomiques, en sections transversales, et en sections verticales, il me sembla que j'etais arrivé à détacher les organes que je cherchais et à séparer leurs respectives positions.
L'union intime des organes rend extrémement difficile leur séparation, et on ne peut le faire qu'avec l'aide de deux microscopes où simultanèment on observe les coupes transversales et longitudinales.

Quiconque étudie, même légèrement, une orchidée, fera tout de suite cette reflexion : comment un organe femelle, peut-il se terminer en mâle? Je m'explique, avant d'exposer le résultat de mes observations.

En prenant une fleur d'orchidée quelconque, on remarque dans son ovaire six divisions, dont trois placentiferes, qui correspondent aux trois petales, et trois divisions steriles, aux sépales.
Eh bien, celles qui doivent correspondre aux trois stigmates, se présentent opposées aux sépales dans le gynostème, ce qui est d'accord avec Lindley et Darwin. Mais, comment explique-t-on cette transposition d'un organe contre la loi de l'alternance? Le gynostème est creux en dedans, c'est-à-dire, il a un cunicule qui se prolonge jusqu'á l'ovaire ; comment donc expliquer le passage d'un organe de la face vers le còté opposé sans que celui-ci traverse au dessus de l'ouverture cuniculaire?

C'est ce que tout d'abord, j'ai tâché d'etudier, me basant sur l'harmonie de la Création, ne pouvant pas pour cela accepter, sans controle, l'opinion des maîtres celébres.
Je présente le diagramme que j'ai établi, fondé sur mes observations, qui pourront n'ètre pas vraies, mais qui ont été consciencieusement faites et qui expliquent beaucoup mieux l'anomalie des fleurs en question, comme vous le verrez plus loin.

Fig. II,-E. E'tamines qui forment les cotés of la face da gynostome. E' E'tamine qui formo le dos du gynostòme ot uni aux lateraux forment lo olinandre. E. - E'tamines qui subdirisies formont non seulement les cotés que les staminodes, eto. S., Stigmates unis, fertiles dans 10 Cypripedium. S." Stigmate dorsal quil formo lo rostele.
Avant d'y arriver, il me convient de faire une observation. On a etabli pour les végetaux ligneux un nom pour désigner le point où la tige se sépare de la racine, pourquoi n'etablissons nous pas aussi un nom pour indiquer la séparation entre l'ovaire et le calice, quand celui-ci est distinct et ne peut pas être confondu avec des bractés?

Plan divisoiro entre l'ovairo ot lo calico des orchidếos. Mézaulhe.

Harmonio. Modifications sans étro motivíos par les férations.

Dans les orchidées, le calice a toujours une ligne de séparation bien nette, ligne qui est occupée par un calicule dans les genres Episthephium, Lecanorchis et dans quelques Vanilles, pourquoi done ce plan de division, ne porte-t-il pas un nom pour l'indiquer? Dans ce moment, par exemple, l'absence d'un nom m'embarasse pour pouvoir clairement et naturellement expliquer la position des filets des stigmates, et, dans ce cas, je n'ai pas hésité à créer un nom pour la ligne ou plan de division entre l'ovaire et la racine du calice. Pour cette ligne, je propose donc le nom de mezanthium, on mézanthe, dont l'origine grecque vient de μ ícoo, milieu et avoos, fleur. Aprés cette remarque je crois pouvoir continuer.
Comme nous le savons, les unions des organes floraux sont trés-communs parmi les monocotylédonées; la loi organogénique et celle de l'alternance ne sont jamais démenties, quand on connait bien la morphologie vegétale et pourtant guidé par ces principes établis dans la science et par ce qu'on voit dans la nature, je suis arrivé à un résultat, quoique contraire à celui déjả connu, mais qui nous montre bien les modifications par lesquelles a passé une fleur d'orchidée, pour arriver à l'etat où on la voit aujourd'hui ; c'est-à-dire, sans les modifications des gerations, mais comme telle qu'elle est sortie des mains du Créateur, qui, dans sa sagesse, nous présentant ce que nous voyons naturellement, n'a pas laissé, au fond, de suivre organogeniquement le type établi, qui caché on peut néanmoins le démasquer.
Nous pouvons considérer une fleur d'orchidée comme une fleur anomale, car l'anomalie, selon la bonne définition de Sainte-Hilaire, n'est qu'un autre arrangement qui a ses limites et ses régles, en nous offrant des transitions d'un ordre habituel pour un autre nouveau. En considérant bien l'anomalie, elle n'entre pas dans les faits
tératologirues, car jamais elle n'attaque la santé du végétal.
En faisant une section horizontale dans l'ovaire d'une orchidée, on voit facilement qu'il est composé de six carpelles et nonde trois, quoiquil presente trois placentas seulement. Pour n'en admettre que trois, comme en genéral les placentas occupent les bords des feuilles carpellaires, et non la nervure médiane, nous aurons trois placentas occupant les bords des feuilles carpellaires et la déhiscence du fruit se faisant par les nervures, ce qui n'a pas lieu dans ce cas et mème ce fait est trés-rare dans d'autres fruils. Outre cela, dans l'ovaire uniloculaire, les placentas pariétaux ne peuvent pas, d'aucune maniere, laisser d'appartenir à deux carpelles différentes, par conséquent trois placentas représentant six carpelles. Nous avons alors six carpelles, comme nous le verrons mieux plus loin, mais outre ces six, nous voyons encore en plus trois divisions stériles et nous observons encore sur le dos des carpelles fertiles quelque chose qui les modifie toujours, ce qui, d'aprés la loi de la symétrie, nous permet de dire que la fleur contient douze carpelles. (Fig. III. a. b. c.)
Cela nous semblerait absurde, si nous ne savions pas que deux verticilles peuvent se lier intimement en nous présentant de nouvelles formes et une nouvelle consistence. Ainsi, le type primitif de ces fleurs, s'il a existé, ce dont je doute, devait être composé: d'un calice de six sépales (Fig. III b. c.), d'une corolle de six pétales (a.), d'un androcee de six étamines (d.) et d'une gynécee de six stigmates, (E.) groupés par trois.

Il semble que cette hypothèse est contraire à ce qui est établi, c'est-à-dire, que le nombre trois caracterise les monocotylédonées, mais je ne m'eloigne pas de ce principe, tant que le nombre trois est celui que je

Trois valvulot qui corrospondons a six carpellos.

Typo théorique d'uno fleur.
présente prédominant dans les verticilles de la fleur, comme nous la voyons aujourd'hui.

En recherchant les parties qui la constituent, je rencontre le nombre trois, mais venant de six, ce qui ne fait pas exception á la loi, parce que ce fait le confirme, présentant clairement des verticilles de trois organes.

Les feuilles carpellaires en formant un verticille au lieu de se souder par les bords, ont souffert une compression qui a servi á les diviser en deux, six en cercle exterieurement (b. c.) et les autres six en dedans. (a.) Lá commence l'anomalie avec l'union des unes avec les autres, en formant les deux verticilles au sommet de l'ovaire et un à la base.
Les six qui sont devenues intérieures, alternativement, se sont soudées deux à deux et ont conservé la proprièté reproductrice, pendant que les six extérieures, trois sont devenues steriles et trois sa sont liees intimement aux intérieures, protégeant les bords liés, oú les placentas se présentent, en déterminant ainsi la forme qu'elles offrent aujourd'hui.

Voyez le diagramme que j'ai établi pour l'ovaire et le gynostème.

Dans quelques Epidendres, (Encyclium) nous rencontrons clairement la preuve que les trois des six carpelles stériles se lient avec les six fertiles. (Tab. II. fig. 3-4.)

Exemplo de donzo carpolles.

En prenant le fruit de l'Epidendrum odoratissimum on voit que les six carpelles fertiles (a.a.) sont lisses extérieurement, pendant que les trois steriles (b.b.) sont granuleuses; et bien, dans l'union des carpelles fertiles, opposées aux cordons placentifères, existe une raie profonde, dans chacune des paires, dont la concavité est granuleuse, comme les trois carpelles stériles et nous montrent qu'elles sont de la même nature.

Qu'elles sont de vraies carpelles et non des nervures carpellaires nous en trouvons la preuve dans le Dichaea coriacea Barb. Rod. (Tab. II. fig. 6.) Cette espéce,

Uno prouve oxompliffée qu'olles sont dos carpolles ot non des nervares carpollairos. originaire des montagnes du Rodeio, à Rio de Janeiro, ainsi que de Minas Geraes, est venue me montrer que ces carpelles ne sont pas toujours steriles, et que toutes sont

Fig. III.-a. Les carpelles qui so lient et so rendent intérleures et placenifères. b. Les carpelles qui so llent en courrant la suture des intérieures. e, Les carpelles qui devionnent stérlles. d. Etamines qui s'unlssest en trols. e. Stigmates unis, Les lignes polatiliées montront le changement dos carpelles et la direction des étamines qui a'unissent.
propres à être ovolifères. En prenant son ovaire, ou mieux son fruit, en y faisant une coupe transversale, on voit que toutes les carpelles se sont intimement liees, et qu'il n'en reste qu'une de libre, celle du dos, justement l'une des trois qui sont toujours stériles. L'union de celles qui sont fertiles avec les deux autres stériles, est faite d'une telle manière, que ni le parenchyme, ne le

Mollfications qu'ont souffert 10 calice ot la corollo on 80 transformant on périantho.

> Les organes qui composent uno
revèle, car leurs positions sont distinctes si on les compare avec celle du gynostème, et aux faisceaux des vaisseaux vasculaires. La carpelle qui dans toutes les espéces est toujours stérile, est ici fertile, et les deux autres deviennent aussi placentifëres, pendant que celles qui sont toujours fertiles, deviennent steriles. C'est lả une exception, mais qui vient nous prouver, que nous ne poulvons les prendre que pour de vraies feuilles carpellaires. En faisant aussi exception parmi ses compagnes, elle présente ses stigmates sans la torsion, que nous verrons plus loin, et sont placés en s'opposant aux sépales, l'ovaire et le rostelle n'etant formés que par la dorsale seulement. Cette espéce en faisant exception, interrompt la loi de l'alternance, et devient plus anomale, mais cette anomalie vient porter une vive lumière dans la question.
Pour prouver que les trois valvules, considerées jusqu'á ce jour comme trois carpelles, sont au nombre de six et non de trois, je montre la coupe transversale de l'ovaire du Sarcoglottis ornitliecephala. Barb. ${ }^{〔}$ Rod., l'ancien Serapias fascculatia Vellozo, copiee du naturel et augmentée deux fois. (Tab. II. fig. 1. 2.)
Aprés ces exemples qui sont venus à propos, je vous montrerai les autres modifications.
Le calice et la corolle ont souffert aussi des modiflcations dans le nombre de leurs divisions, ainsi que dans leurs positions. Des six sépales, trois ont avorté, et des six pétales trois sont unies aux autres, le calice demeurant tri-sépale, par avortement, et la corole tri-pétale, par l'union. L'androçe et le gynécée se sont unis aussi et en ont formé le gynostème. Par le diagramme que j'ai déjà présenté on saisit bien ces transformations.
Par mes observations, je conclus donc, que théoriquement, comme dans la phrase de Darwin, que le type
primitif d'une fleur orchidacee a eté composé de vingt quatre organes et non de quinze. Un calice avec six sépales, dont trois sont avortés; une corolle à six pétales, dont trois onl été réunis, ceux-ci en alternance avec ceux-lá. Des ces pétales, le supérieur, mais qui par la torsion de l'ovaire devient presque toujours inferieur, a pris une forme spéciale qu'on a nommé labelle; de douze organes reproducteurs plus ou moins modifiés et lies, disposés en trois cercles concentriques, dont six sont les étamines et les six autres réunis en trois faisceaux, forment les styles.

Quand on fait une coupe transversale dans la base d'un ovaire, d'un bouton peu développé, on y voit neuf faisceaux de vaisseaux et trachées en deux verticilles, dont les extérieurs sont plus grands. En poursuivant les coupes, de bas en haut, on remarque que ces vaisseaux, présentant les deux verticilles, sont devenus plus développés et subdivisés, mais qu'en arrivant au mézanthe, la coupe nous montre six divisions déjả bien distinctes, en présentant celles qui en général sont placentifères, trois faisceaux chacune et les steriles, un seulement. Si nous poursuivons les coupes nous voyons que parmi ces vaisseaux, les uns rentrent dans les sépales et pétales, et les autres vont au gynostème. Chaque groupe de vaisseaux représente une carpelle, par conséquent nous avons trois valvules avec un seul groupe chacune, et trois, ayant trois groupes chacune, ce qui nous donne douze groupes. Chaque groupe se compose de deux faisceaux de trachées, l'un placé devant l'autre. Je vous ai montré comme je considère l'union des trois carpelles placentifères n'en formant qu'une, je vous montrerai maintenant comment ces vingt quatre faisceaux se subdivisent. Des carpelles steriles, sortent deux faisceaux, l'extérieur va en se subdivisant aux sépales

Numero dos vais. soaux qu'on roncontro dans un ovairo ot lours directions.
et l'intérieur, forme une étamine, ce qui nous donne déjá trois êtamines. Des carpelles fertiles, (les trois unies) celle du dos, fournit aux pétales un faisceau et l'autre au gynostème, ce qui nous donne encore trois étamines, et porte le nombre à six. Celles-ci, forment deux verticilles, l'intérieur étant compose de trois faisceaux des carpelles fertiles unies aux steriles et l'extérieur avec ceux des stériles seulement. De chaque groupe des carpelles fertiles unies, sortent des laterales quatre faisceaux, deux vont aux petales et deux s'en vont aux pistils, en nombre par consequent de six. Ceux-ci se groupent en trois corps formant un triangle dont la base est opposée au labelle.
Les etamines, suivent la loi de l'alternance, elles sont opposées aux pétales, quoique apparemment elles paraissent l'être aux sépales.
De ces six étamines, il n'y a que le groupe latéral droit (après la torsion que nous verrons) ou le latéral gauche et antérieur, dans le genre Cypripedium, qui sont fertiles.
Les vaisseaux des étamines se divisent irregalièrement au mézanthe et vont, en quelques espèces, non seulement au gynostème qu'au labelle, oú ils forment les lamelles, les caroncules, les tubercules et lui donnent les formes bizarres que quelque fois il presente. Il m’a eté impossible de déterminer le nombre des vaisseaux, dans cette subdivision, car il varie selon les espéces. Dans quelques espéces, ils se subdivisent depuis les carpelles.
Reprenons encore l'ovaire afin de rendre plus clair notre sujet. Dans ses Genera et species, le professeur Lindley en traitant de l'ovaire, nous dit: carpellis 6 constans, quorum 3 petalis opposita placentas didymas polyspermas parietales gerunt, mais plus tard au sujet du
fruit (1) il nous dit qu'il a trois valvules et trois nervures.

Voici son diagramme:

Fig, IV

Robert Brown n'en donnait que trois aussi, et cette opinion est suivie par les professeurs Endlicher, Balfour, Payer, Sachs, etc.
(1) School botany. 1862. pag. 131.

Composition do l'ovaire. Cils qui favorisont la disportion dos somoncos.

Je présente ici les diagrammes de Balfour et Sachs:
Pour moi, je peux étre en erreur, l'ovaire est composé de 12 carpelles, comme je l'ai déjá dit, dont 6 toujours avortent en se soudant et se sterilisant, et 6 se soudent par un bord tandis que l'autre reste sous les carpelles steriles, se touchant légèrement. Le bord ne s'entortille pas comme ceux des placentifères, et ne se sterilise pas, mais

Fig. V. $-a$, Axe do lopl des fours. pe. Pírlanthe exteriour. pi, Doux divisions du périanthe Intericur. d. Troisićmo division du périanthe $^{\text {a }}$ intériour. E. Anthère fertile. SS. Deur anthàres arortćes ous taminodes, O. Oralre.

Fig. V1.-Les polnts noirs marquent les Ctamines compldtemeut absentes, les ronds ombrés sont ceux qui semblent destincis a avorter ples tard pour se transformer en ctamiaodes.
produit, au lieu de placentas, des cils soyeux, dont les extrémités touchent les placentas. A la maturité du fruit, ces cils se detachent et, par un mouvement propre, ils se lévent, pour arracher les semences et les jeter au dehors. Les six autres, contiennentdes placentas parietaux et polyspermes, à la suture, entre la courbature|des deux bords que s'unissent.
Du canal formé par la courbement des feuilles carpellaires prennent naissance six cordons, d'un tissu conducteur, qui au sommet se lient à ceux des carpelles contiguës, en formant un groupe de trois au gynostème. Toutes

21 -

les carpelles restent de cette maniëre en communication les unes avec les autres et toutes liees mutuellement par les stigmates. Aprés la fécondation les stigmates se touchent toujours et ne forment qu'un seul corps glutineux et nous laisse voir les tissus conducteurs gonfles.
Me basant, donc, sur l'autorité de ces mêmes botanistes, en définissant les carpelles, je ne peux pas admettre que l'ovaire d'une orchidée soit composé de 3 ou 6 carpelles, si toutefois mes observations ne sont erronées. Voyons. Qu'est-ce que c'est qu'une carpelle ? Physiologiquement, c'est une feuille modifiée, qui, comme les sepales et les petales peut se lier à une autre. (1) L'union des carpelles les unes aux autres, peut se faire ou en unissant les bords du limbe seulement, ou soudant un peu les bords par le dos, ce qui les oblige à se courber intérieurement. La ligne de l'union nous montre leur nombre, et c'est dans cette union que se présentent les placentas et non sur la ligne qui correspond à la nervure médiane ; par conséquent, autant de placentas nous rencontrons dans un ovaire, autant de carpelles il y aura. Par les sutures, trés-souvent, on ne peut pas distinguer les carpelles, car elles disparaissent par la fusion des deux, que cependant le parenchyme dénonce.
Dans l'ovaire d'une orchidée, on rencontre six valvules, c'est vrai, mais les trois placentifêres sont plus grandes et quoique intimement unies, on voit qu'elles se composent d'autres trois, que nous distinguons par les placentas etpar le tissu cellulaire. Celui-ci nous montre que chacune a un des bords si atrophie, roule et lié qu'il arrive presque à la ligne de la nervure médiane. Les autres bordsse touchent légérement sous les trois

[^11]Qu'est-co qu'une carpollo 9
autres valvules, plutôt des carpelles stériles. Que pourraient donc être ces valvules sinon des carpelles avortees ou incomplètes ? Quel organe est-ce donc celui qui lie les carpelles? Si nous considérons ces trois valvules, qui dans le fruil restent adhérentes, comme des nervures des feuilles carpellaires, comme le veut le professeur Lindley, et qui se détachent, nous n'aurons qu'á admettre que trois carpelles, hypothése à laquelle s'op-
${ }_{\text {pistil. }}^{\text {Composition }} \mathrm{du}$ pistil. pose la structure anatomique des memes.
Il nous semble, donc, hors de doute, que le pistil des orchidees est composé de 12 carpelles, dont trois bien distinctes par leurs placentas, qui nous montrent parfaitement six carpelles unies et six incomplètes, qui par avortement ne produisent pas les parties qui constituent les mêmes, en formant un corps spécial. Dans quelques espèces, ces carpelles ont aussi des placentas rudimentaires, quand elles se présentent avec la face interieure en dedans. De ces douze carpelles, par leur union, elles ne présentent que six valvules, que dans un ovaire non fécondé, quelquefois, extérieurement, on n'en voit que trois, car les trois réproductrices restent protégees et cachées par les stériles, qu'après la fécondation de l'ovaire elles ne se développent pas, les autres venant alors, à être visibles en prennant aussi un plus grand développement.
Dans le Cattleya labiata, le fruit ne présente que trois carpelles placentiferes, les autres sont complètement avortées.
Les six carpelles fertiles donnent naissance à six stigmates, qui ne paraissent etre qu'au nombre de trois, par la soudure qu'ils souffrent, et dont la position naturelle n'est pas celle qu'ils présentent.
Lindley, comme nous avons vu, croyait que les stigmates étaient opposés aux pétales, mais plus tard il modifia son opinion, en les plaçant en opposition aux
sepales. Cette opinion est suivie par Darwin, comme nous le voyons dans son diagramme. Chaque carpelle contribue à former un stigmate, mais par l'union des six en trois, l'une de celles-ci fournit deux stigmates, dont les trachées passent sous le placenta. Les stigmates, en arrivant au mézanthe, les deux de la carpelle antérieure l'un se tourne à droite et l'autre á gauche, en faisant cette operation les quatre autres, et lies ainsi mutuellement celui d'une carpelle avec celui de l'autre, ils forment trois groupes, qui sont les trois stigmates, qui paraissent dans la cavité stigmatique, ou dans une coupe transversale du gynostème: malgré leur inclinaison, ils font continuation aux carpelles, mais au mezanthe ils présentent une torsion, c'est-à-dire, le stigmate de la carpelle antérieure s'incline á droite, ce qui le fait s'opposer au sépale inférieur droit, au stigmate de la carpelle latérale arrive la même inclinaison et celui de la troisième carpelle en suivant la même marche, vient s'opposer au sépale inférieur gauche, ce qui rend le triangle, naturellement, qu'ils forment, inverti par la torsion. Le sommet de celui-ci, qui est opposé au labelle, passe à paraitre opposé au sépale supéririeur, comme on voit dans toutes les fleurs orchidacees. Je crois que cette torsion n'a pas été observée, et c'est elle qui explique comment la carpelle peut avoir son stigmatedu côte opposé au cunicule.
Cette torsion est passée au mézanthe, non en angles droits, mais obliquement.

Le rostelle que tous les botanistes donnent comme formé par lestigmate supérieur, ne l'est pas, mais par le latéral droit qui devient superieur. Je cite un exemple qui peut être vérifié dans toutes les espèces, et une figure, augmentee deux fois, l'illustre. (Tab. II. fig. 5)

Examplo do la tursion des stig.
matos.

> Tissus condu. ctours.

Dans la figure de l'Habenaria Johannensis Barb. Rod. on voit linclinaison et la direction des stylets avec les positions interverties. En comparant la fig. 5 avec le diagramme de l'ovaire, dans sa positton naturelle, on voit le déplacement. Le stylet a. quise prolonge de la carpelle de face va occuper la place de la carpelle a^{\prime}.; le stylet b. la place de b^{\prime}. et le stylet c. la place de c^{\prime}., ce qui intervertit le triangle et ils paraissent opposés aux sépales, contre tous les principes organogéniques.
Chacun des stigmates est doublé d'un tissu conducteur, qui, en genéral, n'arrive pas á la base de l'ovaire, en descendant par le canal formé par lincurvation de la feuille carpellaire, couvrant tous les parois du cunicule du gynostème. Après la déhiscence du fruit, quoiqu'il soit desséché, en le mettant dans l'eau chaude, les tissus se gonflent et avec facilite ils se détachent des carpelles. Ils sont au nombre de six comme les stigmates, et se lient les uns aux autres, comme les carpelles. Dans le Maxillaria squalens Lindl. et dans l'Aspasia lunata Lindl. ainsi que dans d'autres espéces, je les ai séparés très-souvent, présentant aprés la maturité du fruit une consistance soyeuse.
La torsion des stylets est rencontrée dans toutes les sous-tribus de la famille.
Parmi les Neottiacees, le genre Sarcoglottis ne présente pas la torsion, mais la carpelle de la face avorte et forme un étui qui couvre les deux stylets, qui composent le gynostème.
Conformation d'un Sarcoglothis.

Ceux-ci font continuation aux autres carpelles en s'inclinant l'un sur l'autre à se toucher, en s'unissant par le dos et en commun formant le rostelle, qui se prolonge au delà des deux stigmates. Malgré cette modification, le triangle n'est pas interverti; toujours le rostelle est formé par les stigmates latéraux. (Tab.II. flg.1-2.)

Dans ce genre les deux carpelles stériles avortent et la fertile antérieure $c c$. prolonge les bords, qui, recourbés, s'incurvent aprés, de maniére á former les sépales inférieurs, preséntant en dedans, à l'union des autres bords, un cordoṇ placentifére. La décurrence de ceux-ci, glossologiquement, n'est autre chose que les bords des carpelles prolongees. Les figures nous montrent trés-clairement que les carpelles fertiles sont au nombre de six et non pas de trois.
Rien n'est plus variable que la structure des orchidées, qui varie non seulement dans les espéces, que dans les genres. Je neไpeux pas, pour cela, assigner avec precision la subdivision des vaisseaux que contienne chaque fleur, parce que, par la séparation il se rend presque impossible.
Les carpelles steriles fournissent les etamines, soit celles qui sont libres, soit celles qui sont liees aux fertiles, ce qui dans la maturité du fruit, aprés la déhiscence, se remarque, car les carpelles stériles restent liees au gynostéme, qui ne forment avec lui qu'un seul corps, tandis, que les carpelles fertiles se detachent, en facilitant la dissemination des semences.
La curvature qu' elles prennent et la force dehiscive propre, font éclater les trachées qui l'attachaient au gynostéme, ce qui les oblige à s'etaler en se recourbant. Dans quelques genres la dehiscence n'est pas en six valvules, car les carpelles stériles restent adhérentes aux fertiles, comme dans les genres Stelis, Lepanthes, etc. qui s'ouvrent en deux valvules, et dans le Polystachia qui n'en presente qu'une seule, ne parlant pas d'autres genres.
L'étude de la position des faisceaux des vaisseaux vasculaires et de leur nature, est une des choses, qui donnent raison à la théorie que je présente sur l'anomalie

Les carpolies stóriles donnent origine aux étaminos.

L'Habenaria Rodeiensis a douzo deiensis ${ }^{\text {a }}$
carpolies.
des ces fleurs. Dans des coupes transversales des ovaires, tandis qu'on voit que les uns ont un faisceau de vaisseaux opposé au placenta, dans d'autres on voit trois et quatre faisceaux, disposés de manière à nous montrer non seulement les nervures médianes des deux carpelles unies, que la troisième qui se lia aux deux autres et qui unies forment les stigmates ou rentrent dans la formation des étamines, qui sont fournues par les stériles.
Les vaisseaux de celles qui sont stériles, en général, bordent la face extérieure de l'ovaire, opposés aux placentas.

Par ce que je viens d'exposer, il ne me reste qu'à fournir encore un exemple, qui vient répandre une vive lumière sur le sujet, nous montrant clairement que dans chaque carpelle, telles elles ont été considérées jusqu'á aujourd'hui, il y en a trois: deux fertiles et une stérile. On pourra considérer cet exemple comme un dédoublement (diremptio), mais, sans raison. L'Habenaria Rodeiensis Barb. Rod., (Tab. II. fig. 7.) une nouvelle espèce décrite par moi, (1) présente les pétales bipartis et le labelle triparti. L'ovaire présente trois placentas en chaque carpelle fertile, oú sont les vaisseaux et les trachées de la base du triangle, quien général présentent, réunis dans un seul faisceau, tandis que ceux du sommet se divisent en six faisceaux, ce qui arrive aussi dans les trois carpelles stériles, en dénotant une analogie entre celles-ci et celles du dos des carpelles fertiles. Outre cette analogie et cette symétrie, on remarque dans les carpelles fertiles des signes composés de trois ares, deux opposés et un superposé, dont le parenchyme est plein de chlorophylle. Les arcs sont séparés par les faisceaux des carpelles stériles.
(1) Gonera et species ofohidearum novarum. II. pag. 256 n .12. parmi un grand nombre de fleurs, quelques-unes m'ont causé une vive satisfaction. Elles se présentaient modifiées, elles avaient deux labelles et deux éperons. Cette disposition proviendrait-elle d'un dédoublement?
Dunal (1), Moquin-Tandon (2) et St. Hilaire, (3) qui est celui qui a le mieux traité de se sujet, le definissent de cette manière: quand il existe dans un verticille d'une fleur au lieu d'un organe, plus d'un, il existel un dédoublement.
Le dédoublement est un phénomène qui fait partie non seulement des faits organographiques normaux, mais encore tératologiques, et il a lieu non seulement dans les feuilles, mais aussi dans les organes floraux, dégenérations des mêmes. Si le dédoublement s'effectue avec énergie et force en augmentant le nombre des organes, on remarque que dans cette augmentation, presque toujours un organe se divise aux dépens d'un autre qui avorte et dans ceux dédoublés il n'existe pas une parfaite ressemblance; il y a toujours une irrégularité, qui nous montre que l'un est né au dépens d'un autre. Les dédoublements ont lieu dans les verticilles, ou dans le même, ou dans l'autre, d'oú viennent les termes diremptio collateralis et diremptio paralella. Mais, que

[^12]Dédoubloment.
les sépales se dédoublent, moins communément, les voit trois valvules, l'antérieure ayant deux placentas séparés et parfaits, ce qui donne à l'ovaire quatre placentas. Les vaisseaux et les trachées au lieu de présenter les deux de la base du triangle unis intimement et ceux du sommet séparés en six faisceaux, ils se trouvent alors modifiés, présentant ceux qui sont unis, séparés, et ceux qui sont séparés, unis, en formant le triangle, cela dans les carpelles latérales.
Dans celle de face, les trois faisceaux, ne forment pas un triangle, ils sont en ligne, ceux des extrémités ont en face un cordon placentifére et ovolifêre, pendant que celui du millieu n'a rien. (Voyez flg. A. B.) Les carpelles sont modifiées aussi; llau lieu de six faisceaux paralêlles, elles ont deux faisceaux, par l'union intime des six. Serait-ce un dédoublement, qui a modifié non seulement la carpelle mais encore la position de tous les vaisseaux? On y voit que les deux faisceaux de vaisseaux, qui en général sont disposés en triangle, avec le sommet en dehors, sont des faisceaux qui représentent la nervure

Conséquonces d'un dédou. blomont. pétales ou les étamines, ce phénomène y se présente seulement; il ne va pas à lovaire. Eh bien, dans l'espéce en question, pour qu'on admette un dédoublement, il faut admettre le dédoublement de l'ovaire, car non seulement le labelle, les carpelles et les placentas se sont dédoubles, et d'une manière qui justifie l'idee que j'ai sur l'union des carpelles.
Examinons et faisons la comparaison.
Comme j'ai déjá montré, la disposition des vaisseaux et des trachées dans l'ovaire de l'Habenaria Rodeiensis Barb. Rod., dans son état normal, comparons le maintenant avec ceux qu'on remarque dans l'ovaire de la fleur à deux labelles.
Au lieu de trois valvules à un placenta chacune, on
médiane des feuilles carpellaires ; ceux de la base forment les carpelles fertiles et celui du sommet la carpelle stérile.
Dans le cas en question, les carpelles fertiles se sont séparées et la stèrile s'est placee entre elles, s'unissant par les bords, et à l'union des bords de celle-ci avec les bords de celles-lá, se sont formés les placentas, comme devait être le type primitif et que le diagramme que j'ai établi nous montre.
En passant maintenant au labelle, on voit qu'il est divisé en deux, autrement, la fleur a deux labelles libres, sans liaison aucune à la base et formés par les vaisseaux qui se prolongent des carpelles. Chacune a fait son labelle.
Pour ce qui est des formes, elles sont venues, a propos, à mon aide. La fleur regardée de face, ($\mathrm{fg} . \mathrm{C}$.) présente le labelle gauche avec les mèmes formes, le même éperon, et la même grandeur que le labelle normal (D.) présentant seulement la lacinie latèrale droite un peu atrophiée, et le labelle droit (E.) entièrement different du gauche, mais avec la conformation et la grandeur des pétales, (F, avec la seule[différence qu'elle posséde un éperon aussi. Est-ce un dédoublement, mon cher Conseiller? Il est très-naturel que si ça en est un, un des labelles perdrait l'éperon, qui comme vous le savez mieux que moi, est formé par l'union des bords des pétales dans la courbure qu'ils font en descendant pour se relever. Dans le dédoublement l'un resterait avec l'eperon au dépens de l'autre, ou tous les deux avec des éperons plus au moins imparfaits, quand, dans le cas présent tous les deux sont parfaits et égaux pour les formes et pour la grandeur.
Que le labelle est formé par deux pétales unis, comme je l'ai dit autre part, cette fleur est venue me le prouver;

Ressomblanco du labollo arec les pétales.

Confirmation quo 10 laballo ost formó do doux pótales.
tant il est vrai, qu'un des labelles, le gauche, s'est présenté complétement semblable au normal, ayant seulement une petite atrophie, que naturellement, quelques fois, on rencontre; et l'autre, le droit, semblable aux pétales, non seulement par les formes que par la grandeur, nous voulant dire positivement que le labelle est toujours le résultat de l'union de deux pétales, qui plus au moins se modifient par cette union, et par les autres organes qui y concourent aussi.

En comparant les figures copiées exactement du naturel vivant, C.D.E.F. on voit ce que j'affirme.

La séparation du labelle, je l'ai vue plus d'une fois, mais pas aussi clairement, pour me confirmer dans mon opinion sur sa structure.

J'ai observé un autre fait, dans le Cattleya Loddigessi où les pétales avaient disparues, mais par compensation, il présentait|deux labelles parfaits, en tout semblables, l'un opposé à l'autre.

Pig. VII-LL. Deux pótales et uno s'́palo qui liés ont fórmó deux labelles. SS. Deax sépales qui sy sjnt unis formant des sépales et en contribuant A la formation des quatre ctamines e.e.e.e.
PP. Pétales arortés qui cesont trasformés en stigmates pétaloides.
J'ai rencontré dans une des iles de la riviére Parahybuna, à Minas Geraes, un exemplaire du Cattleya cité
en pleine floraison, ayant deux fleurs, composees de quatre divisions; deux sépales et deux labelles, tous les quatre aussi parfaites que celles du type en etat normal. Outre cet écart, elles présentaient quatre etamines et deux stigmates pétaloides, tout disposé comme le diagramme le représente, en exceptant les deux étamines inferieures qui sont supérieures aux stigmates par la torsion qu'ils ont souffert.
Dans cet individu, quoique monstrueux, on remarque que les deux pétales qui s'unissant, ordinairement, aux sépales pour former les pétales, se sont séparés, en s'en allant un au sépale superieur, et avec sa compagne ont formé le labelle supérieur, et l'autre, en restant libre, est passé au gynosteme et forme un stigmate. Le sépale qui habituellement s'unit aux deux pétales, en se rendant libre, s'unit au sépale, qui est toujours libre, et en forma un seul corps, de lá vient que la fleur présente deux labelles opposés, l'un supérieur et l'autre inférieur et deux sépales opposés aussi, en forme d'une croix.
Les faisceaux de trachées qui contribuent à la formation du gynostème, ont eté ceux qui ont le plus souffert, dans l'individu en question. Ceux des divisions qui forment le labelle avortèrent, soit inférieurement, soit superieurement, seulement ceux quiforment les sépales libres et ceux qui s'unissent pour former des pétales ont concouru, de manière que le gynostème présente quatre étamines presque libres et dix stigmates, formés par la division qui resta libre, se montrant pétaloide, quoique liee aux étamines.
Cette disposition confirme encore la manière dont j'envisage la division des trachées et la formation des organes qui constituent le gynostème.

Pour faire la synthése de ce que je viens d'exposer, je vous présente l'Epidendrum vesicatum Lindl, l'illustrant

Explication dos coupos transyorsalos do loovairo de l'Epidendrum vesicatum.
avec des coupes transversales depuis la base de lovaire jusqu'au gynostème, faisant acompagner ces coupes de figures théoriques, basées sur les mêmes coupes, qui présentent le nombre de leurs faisceaux de vaisseaux en suivant leur disposition et leur division, qui nous confirme non seulement mon opinion sur le nombre des carpelles, des vaisseaux et leur distribuition. Voyez la Tab. I.
La figure 1 A et 2, qui sont des coupes horizontales du pédoncule| de l'ovaire, copiées du naturel vivant et augmenteés trois fois, présentent neuf faisceaux de vaisseaux divisés triangulairement, en deux verticilles. Ceux du verticille extérieur représente le calice et l'androcée(1) et ceux du verticille intérieur la corolle et le gynécée. La figure 3 est le commencement de la formation des carpelles et se présente intervertiá cause de la torsion qu'y souffre le pédoncule, La figure 4 représente la section du même ovaire, récemment fécondé, fait dans la partie centrale. Jusque lá les faisceaux marchent intimement unis ou liés et en se prolongent jusqu'á la coupe de la figure 6, qui représente la fin de l'espace occupé par les placentas et le commencement de la séparation des carpelles antérieures, oú l'on forme un canal, (que caractérise le nom spécifique de cet individu) et le commencement aussi de la division des faisceaux des vaisseaux des carpelles antérieures.
Dans la fig. ? qui est la section faite au tiers inférieur du canal, dejá les carpelles présentent chacune son faisceau de vaisseaux, qui leur sert de nervure médiane, au nombre de douze, en ayant les stériles trois. Le milieu du canal réprésenté dans la fig. 8 , présente non seu-

[^13]
lement les trois carpelles anterieures complètement distinctes, en laissant voir les bords extérieurs des deux fertiles, oú l'on se forment les placentas, unis en dedans, que la stérile en face en unissant les autres bords, tous avec leurs vaisseaux dans la place de la nervure médianne.
J'y représente le mézanthe par deux sections, (figs. 9 B . et 10 C .,) en montrant dans la premiere les vaisseaux qui vont aux sépales et dans la deuxième ceux qui vont aux pétales, dejà avec des organes tordus á droite en intervertissant le triangle des stigmates.
Si on remarque bien la fig. 9 B. on voit dans trois verticilles 18 faisceaux de vaisseaux et des trachées, ainsi distribués: les trois faisceaux inferieurs, qu'appartiennent aux trois carpelles antérieures vont former le labelle, et les autres les sépales; les trois du second verticille ce sont les étamines et les autres trois du verticille intérieur les stigmates. En 10 C., section faite immédiatement au dessus de 9 B ., on voit la même formation, seulement les trachées qui forment les sépales ne paraissent plus et l'on voit alors deux autres groupes, un de chaque côté, qui forment les petales.

Dans la fig. 11 D., qui représente une section du gynosteeme, on n'y voit que les faisceaux qu'unis forment lesorganes reproducteurs, et les trois inferieurs qui sont ceux du labelle, dejáa augmentés avec les deux qui réprésentent les deux pétales.
Jusqu'ici je vous ai montré ce qui se passait dans lovaire, en acompagnant sa longueur par des coupes transversales, maintenant je vous montrerai comment ces organes se désunissent, se lient et se subdivisent. Afin de rendre bien clair ce sujet, je me servirai des mêmes coupes, laissant de còté la conformation de leurs circonferences, me basant seulement sur leur exacte

Explication des figures thôoriques ot do la disposition des organos.
disposition des vaisseaux et je vous présenterai des figures théoriques, qui éclairciront mieux la question.
Je vous ai déjà dit que la fleur d'une orchidée avait vingt quatre organes, résultat de douze faisceaux de vaisseaux et de trachées qui se subdivisaient; maintenant je vous les montrerai, les suivant dans l'Epidendre cité, suivant toujours la nature. Il n'y a pas d'imagination, c'est l'observation qui nous guide. Observons donc. La Fig. A'. basée sur la fg. 1 A et 2 , présente en sortant de chaque poin, tun faisceau de vaisseaux intimement liés, au nombre de neuf. Ainsi ces vaisseaux traversent longitudinalement l'ovaire jusqu'au commencement du canal, ($f g .6$.) oú le faisceau de face se divise, et, sur le champ ($f g$. 7,) les trois faisceaux des six carpelles fertiles se subdivisent, en allant ainsi jusqu'au mèzanthe. En y prennant la fg .9 B , en la comparant avec la $f g .8$, on remarque qui pendant que celle-ce a douze faisceaux, celle-lá en a dix huit. Voilá la raison: les trois faisceaux qui correspondent aux trois carpelles unies se divisent en autant'de groupes de trois, representant celui du centre la carpelle stérile, par conséquent, de neuf que nous avons vu à la base, ($f g . A^{\prime}$) nous rencontrons douze au-dessus de l'ovaire. Ces douze en arrivant au mézanthe, (fig. 9 B. A." B.) les six qui correspondent aux six carpelles fertiles se subdivisent en douze aussi; six vont à l'intérieur; ceux de l'intérieur se lient par paires en se courbant l'un sur l'autre immédiat de la carpelle prochaine et se présente en formant les trois sligmates, et les six des carpelles steriles se divisent aussi; ceux des deux carpelles solitaires laterales se divisent en deux faisceaux, l'un monte aux sépales et l'autre forme l'etamine et s'unisse à l'une des carpelles stériles liees aux fertiles; celui de la carpelle sterile du dos se divise en quatre faisceaux, trois montent à la sépale supérieure et l'une
forme l'étamine, s'unissant aussi à celui qui fournit la carpelle stérile droite unie aux fertiles et ceux des trois carpelles steriles liees aux fertiles se divisent en quatre faisceaux aussi, trois montant aux sépales latéraux et l'un à l'intérieur à former étamine, en exceptant seulement les faisceaux de la carpelle anterieure qui au lieu de monter aux sépales, se dirigent trois au labelle et un à former étamine. Nous y avons donc dix huit organes, qui se présentent au lieu de douze.

En comparant $A^{\prime \prime}$ avec B on voit en $A^{\prime \prime}$.lla division des organes et en B comme ils paraissent dejaj divisés, dans la section du mézanthe. En $10 C^{\prime}$ nous voyons cepandant quinze, au lieu de dix huit organes, parce que les uns ont disparus et d'autres se sont présentés: les neuf qui montaient aux sépales en etant encorporés, ils ne figurent pas, car la section est faite immédiatement au dessus de son écart, mais il se présente six, qui sont ceux qui correspondent aux carpelles fertiles et qui entrent dans la composition des pétales et du labelle. En 11 . et D. on n'y voit, alors, que les organes separés qui s'unissent intimement, à former le gynostème et les cinq autres qui appartient au labelle, fournissant, comme nous l'avons vu, les trois intérieurs la carpelle stérile antérieure et les latéraux les fertiles anterieures.
En comparant encore la fig. $A^{\prime \prime}$ avec B. on reconnait que les stigmates que jusqu'á $A^{\prime \prime}$ en formaient un triangle avec la base au dos, en B il presente le même triangle avec la base en face, c'est-à-dire interverti, ce qui a lieu comme je l'ai dit, par la torsion qu'il a souffert à droite. Ainsi $S^{\prime} 1$ de la $f i g$. $A^{\prime \prime}$. passe à occuper la place de $S^{\prime} 2$. et celui-ci la place de $S^{\prime} 3$., n'etant fertile, donc, que S^{\prime} 2., n'en parlant du genre Cypripedium. Voilà, donc, avec cet exemple, je crois mon opinion confirmée; néanmoins, je me soumets á vos justes et savantes observations.

Je dois vous faire voir aussi, que, dans la plus grande partie le faisceau de trachées qui acompagnent les stigmates inferieurs, en arrivant au mézanthe se divise, se courbe, confondu avec le labelle, mais quelques fois il le surpasse, s'unit aux autres du gynostème jusqu'à une certaine hauteur et ensuite se detache; d'autres fois il suit lié jusqu'au stigmate, où, alors, non seulement il se prolonge au dessus des autres, mais se recourbe confondu avec le labelle. Pour ne vous présenter un grand nombre d'exemples, nous avons dans le premier cas, parmi les Vandées, le genre Aspasia, et dans le second, parmi les épidendrées, le genre Epidendrum.

Les étamines qui forment les côtés du gynostème, ne sont pas toujours si lieés qu'elles le paraissent, elles se détachent, se prolongent à former des ailes, des antennes, des caroncules, comme dans les Habenarias. Dans le genre Didactyle, nous en voyons quatre bien clairement. Les posterieures et celles opposées au sépale supérieur, presque toujours se prolongent et toutes ensemble ils forment les bords du clinandre qui protégent l'anthère.

Celui-ci, quelque fois, est formé par les lateraux.
Voilá, mon ami, en resumé le résultat de quelques observations organogéniques auxquelles j'ai procédé sur la famille des Orchidées, qui peuvent étre modifiées, mais, plût à Dieu, qu'elles soient acceptées par vous, ou par ceux qui législent dans la science de Linné. Il faut que vous croyez, que, sans y prendre garde, j'ai trouvé ce résultat, malheureusement un peu contraire à ceux des autres qui ont traité de ce sujet.

Je termine celle-ci, vous présentant encore les cinq diagrammes établis par Blume (1) á la fin de la préface sur les Orchideés.

[^14]On y voit que par le genre Cypripedium les troís étamines commencent à se démasquer, montrant le costumé fertil avorté et les deux autres qui sont steriles fertiles. plus clairement ils se présentent dans le genre Apostasia, séparé par Lindley des orchidées, dont le gynostème se divise en quatre parties, en étant une le stigmate. (Fig. C) Dans le genre Neuwiedia les trois étamines sont bien saillants au sommet du gynostéme, qui est divisé en quatre parties, dont l'une est le stigmate. (Fig. D)

Ces trois genres semblemt retourner au type primitif, ou sert à nous montrer comment s'opéra la révolution qui a eu lieu dans les organes et comme ils se sont liés.

Les figs. A. B. sont les diagrammes de la fleur actuelle sans les étamines qu'on n'y voit, et la mème présentant la position occupée par les étamines latéraux. La fig. E., d'un diagramme fictice, nous donne l'opinion de feu le savant botaniste hollandais, directeur du jardin de Buitenzorg, à Java.

En illustrant celle-ci, et pour en faciliter la compréhention, j'ajoute des planches, avec 37 genres et plus de 100 espéces, tout de grandeur naturelle, à différents degrés de développement, avec des coupes horizontales augmentées, qui marquentle nombre de faisceaux de trachées en chaque carpelle.

Agréez mon cher Ami, l'assurance de ma considération la plus distinguée.
J. Barbosa Rodrigues.

Rodeio, le 22 Juin 1881.

TAB. II

Fig. 1.- Sarcoglottis ornithocephala Barb. Rod. p. p. les placentas; p^{\prime}. p^{\prime}. un placenta formé ì l'union des deux carpelles stériles; r. le rostelle ; s. s. les stigmates. Cette figure représente le gynostème et une partie de l'ovąire, ouvert en ayant, deux fois grossie.
Fig. 2.- Coupe transversale du Sarcoglottis ci-dessus, augmenté deux fois. a. la carpelle stérile; b. les carpelles fertiles; c. c. la troisieme carpelle firtile, qui nous montre que elle est formè de deux autres; d. labelle ; e. e. les dents du labelle; f. un placenta formé à l'union des deux carpelles et quoi en remplace la fertile qui est avortée.
Fig. 3. - Epidendrum odoratissimum Lindl. Fruit de grandeur naturelle.
Fig. 4. - Section transversale du même Epidendre, grandeur naturelle. a. les carp lles fertiles; b. les carpelles steriles superposées aux deux fertiles à qui s'en unit. b^{\prime}. les carpelles stériles et libres.
Fig. 5. - Habenaria Johannensis Barb. Rod. Le gynostème et une partie de l'ovaire ouvert en avant et une coupe transversale de lovaire, tout deux fois augmentós. a. b. c. les carpelles fertiles et les placentas ; $a^{\prime}, b^{\prime \prime}, c^{\prime}$. les carpelles stériles ; a. les stigmates ; e. le rostelle alliforme.
Fig. 6. - Dichaea coriacea Barb. Rod. Un fruit et une section du même, le premier de grandeur naturelle et le second deux fois augmenté. Il nous montre les carpelles intimement unies, n'en restant libre que la fertille d'en face, où le fruit s'ouvre en deux valvules.
Fig. 7.- Les détails de l'Habenaria Rodeiensis Barb Rod. A. la coupe d'un fruit normal ; B. la coupe d'un fruit anormal, tous les deux augmentés six fois, le premier avec trois plicentas et le e cond avec quatre ; C. le labelle gauche; E. le labelle droit; F. an pétale interverti, pour qu'on le compare mieux ; D. un labelle normal; tout deux fois augmentés.
Dans la coupe d'un fruit dévelonpé, quatre fois grossie fig. A. la simple inspection nous montre clairement les trois carpelles, qu'unies, ont été considérées comme une seule. Outre la symétrie de la division des vaisseaux, il y a le coloris qui l'en sépsrent. Dans la fig. ci-contre, observée avec le microscope Nachet, oculaire 1, objectif 2 , ont voit le parenchyme divisé en cellules alongées, disposées en trois groupes, qui se touchent, ayant les deux latêraux son réseau de cellules pleines de chlorophylle et celui du milieu les cellules sans coloration. Trois corps y sont accolés, ne sont-ils pas trois carpelles? Les vaisseaux de la base du triangle vulgaire, y sont réunis dans un seul fuisceau, tandis qui ceux du sommet sont divisés en six, et dispcsés en marquant la ligne de division. Les carpelles stériles ont leurs vaisseaux divisés aussi, en six parties, ce qui ótablit de la symétrie avec los autres, et de l'analogie.

TAB. III

Malaxideae Lindl.

Fig. 1. - Pleurothallis Janeirensis Barb. Rod. Le fruit, dévéloppé grandeur naturelle, et une coupe transversale, deux fois augmentée on montrant les carpelles, et les faisceaux de vaisseáux et des trachées qu'elles on ont; chaque stérile en a un et les fortilles trois unis.

Fig. 2.- P. Johannensis Barb. Rod. Ibidem.
Fig. 3.-P. serrulatipetala. Barb. Rod. Ibidem.
Fig. 4.- P. ecallosa Barb Rod. Ibidem.
Fig. 5.- P.oligantha Barb. Rod: Elle montre l'union des deux carpelles fertiles, qu'A la maturité du fruit se conservent unies on se séparant de la troisième et s'ouvrant on deux valvales.
Fig. 6. - P. tricarinata H. B. K. Voyez l'observation faite à la fig. 1.

Fig. 7.-P. pectinata Lindl. Voyez l'observation de la fig. 5.
Fig. 8.- P. echinantha Barb. Rod. Voyez l'observation de la fig. 1.

Fig. 9.- P , macropoda Barb. Rod. Ibidem.
Fig. 10.- P. crocea Barb. Rod. Ibidem.

$$
\begin{aligned}
& \text { (1) D } \\
& \text { 0) } 0 \\
& \text { Ba boro } \\
& \text { Do }
\end{aligned}
$$

(1)

TAB. IV.

Malaxideae Lindl.

Fig. 1. - Lepanthes modesta Barb. Rod. Un fruit et la coupe du même. Les points noirs nous montrent le nombre do faisceaux des vaisseaux en chaque carpelle. Il s'ouvre on deux valvules.
Fig. 2.- L. Wavoraeana Barb. Rod. Ibidem.
Fig. 3.- L. punctatifolia Barb. Rod. Ibidem.
Fig. 4.- L. lobisserrata Barb. Rod. Ibidem.
Fig. 5.- L. oristata Barb, Rod. Ibidem.
Fig. 6.-L. Gunningiana Barb. Rod. Ibidem.
Fig. 7. - Anathallis racemosa Barb. Rod. Ibidem.
Fig. 8.- Anathallis Ibidem.
Fig. 9.- A. Parahybunensis Barb. Rod. Ibidem.
Fig. 10.- Octomeria albina Barb. Rod. Ibidem.
Fig. 11. - Lyparis elata Lindl. 11 nous montre les carpelles stériles connées aux fértiles avec le dos lisse comme celles qui sont libres.

Fig. 12. - Didactyle micropetala Barb. Rod. Un fruit présentant cinq carpolles unies, en s'ouvrant en deux valvales.
Fig. 13.- Didactyle. Ibidem.
Fig. 14. - D. antennifera Lindl. Ibidem.

TAB. V.

Epidendreat Lindl.

Fig. 1.-Epidendrum squamatum Barb. Rod. Un fruit et sa coupe transversale, gr. nat.; coupo transversale da gynostème, deux fois grossie. Les points noirs montrent les faisceaux de vaisseaux et leur subdivision.

Fig. 2.-E. pygmeum Lindl. Un fruit et sa coupe transversale, gr. nat. Dans les carpelles les faisceaux sont on ligne et non disposés on triangle.
Fig. 3.-E. variegatum Hook. Les faisceaux sont liès intimement. Fig. 4. - E. coriaceum Hook. Ibidem.
Fig. 5. - E. fragrans, var. Les faisceaux sont disposès en triangle.
Fig. 6.-E. Avioula Lindl. Voyez obs. fig. 3.
Fig. 7.-E. Betimianum Barb. Rod. Voyez obs. 5.
Toutes ces espècos s'ótalent on six valvules.

TAB, VI.

Epidendreaz Lindl.

Fig. 1.- Epidendrum ramosum Lindl. Un frait bien développe et sa coupe transversale, gr. nat. Les vaisseaux sont liés intimement.

Fig. 2. - E. latilabre Lindl. Un fruit peu développé, gr. nat. et sa coupe horizontale, deux fois grossie. Les vaisseaux sont disposes en triangle, mais ceux du sommet sont subdivisés. a. coupe du gynosteme montrant le nombre de vaisseaux que contribuent à sa formation.
Fig. 3. - E carpophorum Barb. Rod. Un fruit un peu développé et sa coupe transversale, gr. nat. Dans cette coupe les faisceaux dans les carpolles fertiles sont distribués en triangle et la stérile qui couvre la suture de la fertile d'en avant, ne les touche que par les bords, en laissant entre leurs dos et sa face une ouverture cuniculaire. Les trois faisceaux de vaisseaux qui, en général, denotent les trois nervures médiannes des carpelles, y sont subdivisés, deux restent dans les deux carpelles fertiles ot un passe à la carpelle stérile divisé en cinq, nous montrant bien les trois feuilles carpellaires.
Fig. 4.-E. ochrochlorum Barb. Rod. Un fruit développé, gr. nat., fet sa coupe transversale, augmentée deux fois. On voit dans celui-ci les〕trois faisceaux disposés en triangle, dans les carpelles fertiles, tandis que dans la carpelle stérile on n'en voit qu'un.
En examinant l'ovaire avant la fécondation, on voit que la carpelle antérieure a les bords incurvés à se toucher au centre de l'ovaire, en laissant de la sorte un canal fermé. Après la fécondation la partie intérieure, c'est-à-dire, où les bords sont unis, se retire, s'appuye aux parois intérieus du dos et ens'unit, se présentant comme on voit dansla, coupo transversale du fruit. En acompagnant le fruit, on voit néanmoins qu'á son sommet elles so délient une autre fois et forment alors le canal qu'on voit en a.

Fig. 5.- E. cauliflorum Lindl. Un fruit, gr. nat. et sa coupe transversale, deux fois augmentée, montrant trois faisceaux de vaisseaux dans les carpelles fertiles et un dans les stériles.

TAB. VII

Epidendrear Lindl.

Fig. 1.-Cattleya Mossiae Hook. Coupe d'un fruit pea développó, gr. nat. Les carpelles stériles avortent, on n'a figaré gue leurs faigceaux de vaisseaux divisés on deux groupes. Dans les fertiles, du groupe de trois, et qui forment le triangle, celui du sommet se subdivise les subdivisions allant occuper les bords des carpelles.

Fig. 2.-C. Schilleriana Rchb. fil. Le fruit et la coupe transversale, gr. nat. Dans celui-ci les groupes de vaisseaux et des trachées des carpelles fertiles sont divisés, les deux latéraux de la base du triangle, vont aux cotés et celui du sommet' vient en avant. Les faisceaux des carpelles stériles se subdivisent aussi en trois, disposés on triangle.
Fig. 3.- C. Loddigesii Lind1. Le fruit et sa coupe, gr. nat. Les subdivisions des trois faisceaux, sont ici différentes encore. Les trois faisceaus des carpelles fertiles, qui sont disposés en triangle, se subdivisent, les latóraux se divisent on quatre disposés en ligne et celui du sommet se divise triangulairement on trois. Ce groupe qui correspond a la carpelle stérile, solidifiée aux fertiles, avec cette subdivision de vaisseaux se montre tout semblable aux trois faisceaux des carpelles stériles libres, qui se subdivisent aussi en trois.
Fig. 4.- C. fragrans Barb. Rod. Une section d'un fruit pen développé. II a les trois faisceaux des carpelles fertiles très-divisés ; les deux de la base du triangle subdivisés en six et celui du sommet on trois. Les carpelles stériles ont. leurs faisceaux divisés on cinq.

TAB. VIII

Epidendreae Lindl.

Fig. 1.- Laelia Perrinii Lindl. Le fruit peu développé et une section transversale, gr. nat. Par la section du fruit on voit que les trois faisceaux de trachées des carpelles fertiles se sont subdivisés, ne laissant, organogéniquement, d'être disposés en triangle, comme dans la fig. 3. de la tab. V.; néanmoins, ici les faisceaux latéraux se sont subdivisés en quatre parties, disposés on ligne droite se dirigeant vers les cótés et le faisceau du sommet du triangle divisó, aussi, en quatre parties, trois se sont disposés en ligne et une a passée en avant pour se placer entre les deux faisceaux latéraux. Les carpolles stériles montrent leurs faisceaux également divisés en quatre parties disposées comme celles de la carpelle sterile qui couvre les fertiles. Ceci nous confirme qu'au dos de celles-ci, il y en a une autre de même nature des stériles.
Fig. 2. - L. rupestris Lindl. Fruit développé et la coupe transversale, gr. nat. Les carpelles fertiles présentent trois faisceaux de trachées disposées en triangle, celui du sommet étant divisé en trois parties. Dans les carpelles stériles nous voyons leurs faisceaux divisés en deux. Dans cet exemple il n'y a que les carpelles stériles dont les faisceaux se divisent.

Fig. 3. - Leptotes bicolor Lindl. Frait peu développé et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de trachées disposés en triangle, et un dans les stériles.

Fig. 4. - Sophronitis cernua Lindl. Fruit développó et la coupe transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de traciées disposés en triangle, mais celui du sommet, qui correspond aux carpelles stériles sont divisés on trois. Les carpelles stériles n'ont qu'un seul faisceau chaqu'une.

Fig. 5. - Laelia chantina LindI. Section d'un fruit peu développé gr. nat. Elle a les vaisseaux de la base du triangle des carpelles fertiles divisés en trois parties et coux du faisceaux du sommet réunis en un seul faisceau, mais laxement. Ler carpelles stériles ont les vaisseaux divisés aussi en triangle, mais à sommet interverti.

TAB. IX

ERIDENDREAE ET VANDEAE LINDL.

Fig. 1.-Schomburgkia crispa Lindl. Un fruit très-jeune et une section transversale, gr. nat. Les carpelles fertiles ont trois faisceaux de vaisseaux en triangle et les stériles n^{\prime} ont qu^{\prime} un seul.
Fig. 2.-Tetragamestus modestus Rechb. fil. Le fruit dèveloppé avec une section, deux fois augmentée. Toutes les carpelles ont un seul faisceaux do trachées.
Fig. 3.-Isochilus lineares R. Br. Ibidem
Fig. 4.-Cattleya Schilleriana. Lindl. L'ovaire, non fécondé, augmentó deux fois, pour qu'ou puisse le comparer avec les fruits.
Fig. 5-6 AEranthus sp. Je conserve et j'ai dejá dessiné deux espèces tres-semblables par ls facies, mais dont les fruits s'éloignent par la grosseur. Je ne les ai pas encore déterminées, mais je présente ici les dessins des fruits, gr. nat. avec leurs sections, l'une augmentée deux fois et l'autre quatre. Les carpelles fertiles latérales sont intimement liées n'en formant qu'un seul corps, qui a la maturité s'ouvrent en deux valvales.
Fig. 7.- Maxillaria coriacea Barb. Rod. Des sections d'an fruit et du gynostème, le premier développé et de gr. nat. et le second augmenté deux fois. Les carpelles fertiles latérales sont liées en un seul corps, et les triangles des vaisseaux, qui sont subdivisés, ont les sommets intervertis. Les faisceaux latéraux se divisent en deux, et de celui du sommet se détache une trachée qui so place au centre formé par les divisions des latéraux. Les faisceaux des carpelles stériles se divisent aussi en six parties ot le fruit a'ouvre on deux valvules.
Fig. 8.- M. uncata Lindl. Un fruit, gr. nat. et une section horizontale, augmentée deux fois. Les vaisseaux des carpelles fertiles sont unis dans un seul faisceau circulaire, mais pas intimement, et ceux des carpelles stériles sont unis dans un seul faisceau, aussi, mais très-intimement.

Fig. 9.-M. longipetala Barb. Rod. Sections transversales d'un fruit et du gynostème, augmentées deux fois. Les carpelles fertiles ont les faisceaux des trachées disposés on triangle, mais, les deux latéraux, qui correspondent aux carpelles vraiement fertiles, divisés en deux parties et celui du sommet, qui appartient à la carpelle stérile qui les unit en entier. Les carpelles stériles ont leurs faisceaux divisés en six parties dontl'une n'a que deux trachées.

Fig. 10.-M. squalens Hook. Fruit développé, gr. nat. et des soctions du même et du gynostème, deux fois augmentées. II a les vaisseaux réunis dans un seul faisceaux dans chaque carpelle.

Fig. 11.-M. phoenicanthera Barb. Rod. Un fruit avec une section, gr. nat. Les carpelles fertiles ont trois faisceaux disposés en triangle et les stériles n'ont qu'un seul.

TAB. X

VANDEAE LINDL.

Fig. 1.- Maxillaria leucaimata Barb. Rod. Un frait, gT. nat. et des sections transversales du même et du gynostème, deux fois augmentées. Dans ce fruit on voit clairement les vaisseaux, qui des carpelles fertiles s'en vont aux pótales et au gynostème, ainsi que ceux des stériles qui vont aux sépales et au gynostéme également. Les carpelles fertiles ont les deux faisceaux latéraus très-unis dans un seal et ceux du sommet du triangle (des carpelles stériles) divisés en trois parties; celles-ci vont aux pétales. Dans les stériles, libres, les faisce7ux se divisent on deux, l'un se subdivise en cinq et vont aux sépales et l'autre en trois qui vont aux étamines.
Fig. 2.-M. rufescens Lindl. Un fruit très deivoloppé et des sections du même et du gynostème, tout gr. nat. Tous les vaisseaux sont réunis dans un seul faisceau, dans chaque carpelle.
Fig. 3.- Trigonidium macranthum Barb. Rod. Le fruit, gr. nat. avec une section du même ot une autre du gynostème, deux fois augmentées. Il présonte dans les carpelles fertiles deux faisceaux do yaisseaux pas très-unis et celui qui ordinairement forme le sommet du triangle, subdivisó en sept parties, cellos-ci concourent à la formation des pétales et dans les carpelles stériles le faisceau est divisé en doux parties, l'une (l'extérieure) subdivisée en sept aussi et qui yont aux sépales.
Fig. 4.- Dicrypta Bauerii Lindl. Un fruit et une section horizontale, du mème gr . nat. et une section du gynostème deux fois augmentée.

Les carpelles fertiles ont leur triangle de vaisseaux divisés. Les faisceaux latéraux se divisent et contribuent chacun avec des vaisseaux qui s'unissent mutuellemeut eutre eux, en formant un troisième faisceau, et ceux du sommet du triangle se divisent en trois et suivent les pátales. Les faisceaux des carpelles stériles se divisent en six parties, triangulairement, avec les sommets opposés ; celles du triangle extérieur vont aux sépales.
Fig. 5. - Dicrypta irisphyta Barb. Rod. Un fruit, gr. nat. et des sections du même et du gynostème, deux fois augmentées. Cette espèce présente, dans cos carpelles fertiles, le triangle des faisceaux de trachées modifié, les faisceaux latéraux s'unissent intimement et ceux du sommet se divisent en cinq parties. Dans les carpelles stériles, les faisceaux se divisent en cinq parties aussi, on concourant aux sépales, comme ceux des carpelles fertiles concourent aux
pétales.

TAB. XI

Vandeae LindL.

Fig. 1. - Oncidium trichodes Lindl. Un fruit trèsdéveloppé et \&я section, gr. nat. Dans chaque carpelle tous les faisceaux de vaisseaux sont reunis dans un ssul.
Fig. 2.-O. pumilum Lindl. Ibidem.
Fig. 3.- O. sarcodes. Lindl. Fruit développé et une coupe transversale, gr. nat. Les faisceaux des vaisseaux des carpelles fertiles s'unissent làchement dans un seul faisceaux et ceux des carpelles stériles se divisent en trois, triangulairement.

Fig 1. O. raniferum Lindl. Fruit. gr. nat. et une coupe horizontale, deux fois grossie. Prósente la conformation de celui de la fig. 2.

Fig. 5.- O. flexuosum. Lindl. Ibidem.
Fig. 6.-O. divaricatum. Lindl. Ibidem.
Fig. 7. - O. crispum Lodd. Fruit et section deux fois grossis. Les carpelles fertiles ont les faisceaux de trachées en triangle et les stériles divisés en deux groupes.

TAB. XII
Vandeaz Lindl.
Fig. 1.- Oncidium pubes Lindl. Une frait, gr. nat. avec la section deux fois grossie. Les carpelles fertiles ont leurs faisceaux réunis intimement, mais avec la conformation triangulaira, et les carpelles stériles leurs faisceaux divisés en deux groupes, sans se séparer l'un de l'autre.

Fig. 2.- Miltonia Russelliana Lindl. Des sections de lovaire et du gynostème, celle-ci grossie deux fois. Les carpelles fertiles ont les faisceaux dispos jes en triangle et les stériles, divisés en deux groupes.

Fig. 3. - M. Cloroessi Rchb. fil. Un fruit, gr. nat. des sections de l'ovaire et du gynostème, deux foís augmentées. Il a la même conformation de l'espèce ci-dessur.
Fig. 1.- M. Alavescens Lindl., M. spectabilis. Lindl. et M. Regnellii. Rchb. fil, présentent la même disposition des vaisseaux de l'espèce ci-dessus.
Fig. 5. - Aspasia lunata Lindl. Un fruit et des sections du mème et du gynostème, deux fois grossis. Il a les faisceaux des vaisseaux dans les carpelles fertiles divisés en trois et disposés on triangle, mais ceux des carpelles stériles réunis dans un seul faisceau.
Fig. 6. - Bifrenaria fragrans Barb. Rod. La section de I'ovaire deux fois grossie.
Les vaissesux des carpelles fertiles forment un trianglo a sommet interverti; c'est-a-dire les faisceaux de la carpelle stérile rentrent, le triangle se diviso: les faisceaux latéraux se divisent on quatre parties, et ceux du sommat se divisent en trois, formant une ligne qui sópare les carpalles fértiles. Los faisceaux des carpalles stóriles libres se divisent en deux groupez, mais colui de la portion extérieure se subdivise en quatre.

Fig. 7. - Zygopetahum Mackayi. Hook. Coupe d'un fruit, gr. nat. et des sections du mème et du gynostèm3, deux fois grossies. Dans toutes les carpelles les vaisseaux sont réanis ou un seul faisceau.

Fig. 8.-Cirrhaea tristis Lindl. Section d'un fruit, pou développé. Ses vaisseaux offrent les même disposition, que l'espère ci-dessus, soulement les yaisseaux dans les carpelles fertiles s ant disposés on ligne.

TAB. XIII

VANDEAE ET OPHRYDEAE

Fi5. 1. - Zygopetalum brachypetahum Lindl. a leurs vaissesux disposies comme dans le Z. Mackayn (Tab. XII fig. 7.)

Fig. 2. - Cyrtopera polyantha Bärb. Rod. Un fruit développé et la section transyersale, gr. nat. En conservant les faisceaux des carpelles fertiles la disposition triangulaire, néanmoins le faisceau du sommet du triangle, celui de la carpelle stérile, so diviso on deux on se subidivisant encore le groupe le plus extérieur, ce qui a lieu aussi dans les stériles libres.

Fig. 3.-Warscewoicsella digitata. Barb. Rod. Un fruit, une section da même et une autre du gynostème; tout gr. nat. Les vaisseaux. sont unis faiblement en trois faisceaux, disposés en triangle, mais dans les carpelles stériles ils forment un seul faisceau.

Fig. 1.-W. cochleata Rchb. fil. Un fruit et une section, gr. nat. Le triangle des faisceaux dans les carpelles fertiles a le sommet divisó en trois parties, triangulairement aussi. Dans les carpelles stériles, les vaisseaux sont divisés on deux groupes, se divisant au plus extérieur en trois triangulairement, présentent cette symétrie de l'analogie entre elles et les carpelles du dos des fertiles.
Fig. 5. - Lockartia lunifera Rchb. fil. Un fruit développó et la section deux fois grossie. Toutes les carpelles présentent leurs vaisseux réunis en un senl faisceau.
Fig. 6. Masdevalia aristata Barb. Rod. Il a la même disposition des vaisseaux que l'espèce ci-dessus.
Fig. 7.- Habenaria Josophensis Barb. Rod. Toutes les carpelles ont leurs vaisseaux réunis en un seul faisceau.

[^0]: (i) Obsorvations on the organs and mode of focondation in Orchideaz and Asclo-
 in piadoan, in -4.0 London. 1833.

[^1]: (1) Je suis d'accord ayeo St. Hilairo, quoiquo Jussieu, Ungor, Endlicher, Schloidon ot d'autres, soient d'opinion contraire, sur la partio qui forme lo pistil.

[^2]: (1) Considérations sur la nature of les rapports do quelques uns des organes do la fleur. 1 vol. in 4 Montpellier. 1829.
 (2) Essai sur les dédoubloments, in 4.0 Montprollior. 1825.
 (3) Murphologio végótalo. Paris . 1840.

[^3]: (4) Jo donno ici co nom à Yapparoil soxuel malo, 「aiasi quo gynécéo a l'apparoil sexuel fomolle, conservant l'ancion nom é ovairo pour la partio du pistil quir ron-
 ferma feł orules.

[^4]: (1) Flora Jave. IV.

[^5]: (i) Obsorvations on the organs and mode of focondation in Orchideaz and Asclo-
 in piadoan, in -4.0 London. 1833.

[^6]: (1) Je suis d'accord ayeo St. Hilairo, quoiquo Jussieu, Ungor, Endlicher, Schloidon ot d'autres, soient d'opinion contraire, sur la partio qui forme lo pistil.

[^7]: (1) Considérations sur la nature of les rapports do quelques uns des organes do la fleur. 1 vol. in 4 Montpellier. 1829.
 (2) Essai sur les dédoubloments, in 4.0 Montprollior. 1825.
 (3) Murphologio végótalo. Paris . 1840.

[^8]: (4) Jo donno ici co nom à Yapparoil soxuel malo, 「aiasi quo gynécéo a l'apparoil sexuel fomolle, conservant l'ancion nom é ovairo pour la partio du pistil quir ron-
 ferma feł orules.

[^9]: (1) Flora Jave. IV.

[^10]: (i) Obsorvations on the organs and mode of focondation in Orchideaz and Asclo-
 in piadoan, in -4.0 London. 1833.

[^11]: (1) Je suis d'accord ayeo St. Hilairo, quoiquo Jussieu, Ungor, Endlicher, Schloidon ot d'autres, soient d'opinion contraire, sur la partio qui forme lo pistil.

[^12]: (1) Considérations sur la nature of les rapports do quelques uns des organes do la fleur. 1 vol. in 4 Montpellier. 1829.
 (2) Essai sur les dédoubloments, in 4.0 Montprollior. 1825.
 (3) Murphologio végótalo. Paris . 1840.

[^13]: (4) Jo donno ici co nom à Yapparoil soxuel malo, 「aiasi quo gynécéo a l'apparoil sexuel fomolle, conservant l'ancion nom é ovairo pour la partio du pistil quir ron-
 ferma feł orules.

[^14]: (1) Flora Jave. IV.

